Suppr超能文献

人工智能在肝包虫病超声分类中的临床应用。

Clinical Application of Artificial Intelligence in the Ultrasound Classification of Hepatic Cystic Echinococcosis.

机构信息

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Ultrasonography Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, College of Medical Engineering Technology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.

出版信息

Am J Trop Med Hyg. 2024 May 28;111(1):93-101. doi: 10.4269/ajtmh.23-0519. Print 2024 Jul 3.

Abstract

Hepatic cystic echinococcosis (HCE) is a zoonotic disease that occurs when the larvae of Echinococcus granulosus parasitize the livers of humans and mammals. HCE has five subtypes, and accurate subtype classification is critical for choosing a treatment strategy. To evaluate the clinical utility of artificial intelligence (AI) based on convolutional neural networks (CNNs) in the classification of HCE subtypes via ultrasound imaging, we collected ultrasound images from 4,012 HCE patients at the First Affiliated Hospital of Xinjiang Medical University between 2008 and 2020. Specifically, 1,820 HCE images from 967 patients were used as the training and validation sets for the construction of the AI model, and the remaining 6,808 images from 3,045 patients were used as the test set to evaluate the performance of the AI models. The 6,808 images were randomly divided into six groups, and each group contained equal proportions of the five subtypes. The data of each group were analyzed by a resident physician. The accuracy of HCE subtype classification by the AI model and by manual inspection was compared. The AI HCE classification model showed good performance in the diagnosis of subtypes CE1, CE2, CE4, and CE5. The overall accuracy of the AI classification (90.4%) was significantly greater than that of manual classification by physicians (86.1%; P <0.05). The CNN can better identify the five subtypes of HCE on ultrasound images and should help doctors with little experience in more accurately diagnosing HCE.

摘要

肝包虫病(HCE)是一种人畜共患的寄生虫病,由细粒棘球绦虫的幼虫寄生在人和哺乳动物的肝脏中引起。HCE 有五个亚型,准确的亚型分类对于选择治疗策略至关重要。为了评估基于卷积神经网络(CNN)的人工智能(AI)在超声影像上对 HCE 亚型进行分类的临床应用价值,我们收集了 2008 年至 2020 年新疆医科大学第一附属医院 4012 例 HCE 患者的超声图像。具体来说,我们使用了 967 例患者的 1820 个 HCE 图像作为训练和验证集来构建 AI 模型,其余 3045 例患者的 6808 个图像作为测试集来评估 AI 模型的性能。将 6808 张图像随机分为六组,每组包含五种亚型的比例相等。每组的数据均由住院医师进行分析。比较了 AI 模型和人工检查对 HCE 亚型分类的准确性。AI HCE 分类模型在诊断 CE1、CE2、CE4 和 CE5 亚型方面表现良好。AI 分类的总体准确率(90.4%)明显高于医师手动分类的准确率(86.1%;P<0.05)。CNN 可以更好地识别超声图像上的 HCE 五种亚型,有助于经验不足的医生更准确地诊断 HCE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b5/11229658/92d03e61bdb9/ajtmh.23-0519f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验