Xue Di-Xiu, Zhang Rong, Feng Hui, Wang Ya-Lei
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027 China ; Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, 230027 China.
Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China.
J Med Biol Eng. 2016;36(6):755-764. doi: 10.1007/s40846-016-0182-4. Epub 2016 Dec 10.
This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical features from patches. We investigate a series of data augmentation techniques to progressively improve the prediction invariance of image scaling and rotation. For classifier boosting, SVM is used as an alternative to softmax to enhance generalization ability. The effectiveness of CNN feature representation ability is discussed for a set of widely used CNN models, including AlexNet, VGG-16, and GoogLeNet. Experiments are conducted on the NBI-ME dataset. The recognition rate is up to 92.74% on the patch level with data augmentation and classifier boosting. The results show that the combined CNN-SVM model beats models of traditional features with SVM as well as the original CNN with softmax. The synthesis results indicate that our system is able to assist clinical diagnosis to a certain extent.
本文聚焦于微血管形态类型的特征提取及分类问题,以辅助食管癌检测。我们提出了一种基于补丁的系统,该系统采用具有数据增强功能的混合支持向量机(SVM)模型用于上皮内乳头毛细血管袢识别。设计了一种贪婪补丁生成算法和一个名为NBI-Net的专门卷积神经网络(CNN),用于从补丁中提取分层特征。我们研究了一系列数据增强技术,以逐步提高图像缩放和旋转的预测不变性。对于分类器增强,使用支持向量机替代softmax以增强泛化能力。针对包括AlexNet、VGG-16和GoogLeNet在内的一组广泛使用的卷积神经网络模型,讨论了卷积神经网络特征表示能力的有效性。在NBI-ME数据集上进行了实验。通过数据增强和分类器增强,补丁级别的识别率高达92.74%。结果表明,组合的卷积神经网络-支持向量机模型优于以支持向量机为基础的传统特征模型以及采用softmax的原始卷积神经网络模型。综合结果表明,我们的系统能够在一定程度上辅助临床诊断。