Emerson Amy E, Lyons Quincy, Becker Matthew W, Sepulveda Keven, Hiremath Shivani C, Brady Sarah R, Chilimba Chishiba, Weaver Jessica D
School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA.
School of Biological and Health Systems Engineering, Arizona State University, 550 East Orange St., Tempe, AZ, 85281, USA.
Biomaterials. 2025 Jun;317:123040. doi: 10.1016/j.biomaterials.2024.123040. Epub 2024 Dec 26.
Insulin-secreting allogeneic cell therapies are a promising treatment for type 1 diabetes, with the potential to eliminate hypoglycemia and long-term complications of the disease. However, chronic systemic immunosuppression is necessary to prevent graft rejection, and the acute risks associated with immunosuppression limit the number of patients who can be treated with allogeneic cell therapies. Islet macroencapsulation in a hydrogel biomaterial is one proposed method to reduce or eliminate immune suppression; however, macroencapsulation devices suffer from poor oxygen transport and limited efficacy as they scale to large animal model preclinical studies and clinical trials. Hydrogel geometric device designs that optimize nutrient transport combined with methods to promote localized vasculogenesis may improve in vivo macroencapsulated cell viability and function. Here, we demonstrate with finite element modeling that a high surface area-to-volume ratio spiral geometry can increase macroencapsulated islet viability and function relative to a traditional cylindrical design, and we validate these observations in vitro under normoxic and physiological oxygen conditions. Finally, we evaluate macroencapsulated syngeneic islet survival and function in vivo in a diabetic rat omentum transplant model, and demonstrate that high surface area-to-volume hydrogel device designs improved macroencapsulated syngeneic islet function relative to traditional device designs.
分泌胰岛素的同种异体细胞疗法是治疗1型糖尿病的一种有前景的方法,有可能消除低血糖症和该疾病的长期并发症。然而,必须进行长期全身性免疫抑制以防止移植物排斥,并且免疫抑制相关的急性风险限制了能够接受同种异体细胞疗法治疗的患者数量。将胰岛包裹在水凝胶生物材料中是一种减少或消除免疫抑制的提议方法;然而,随着扩大到大型动物模型的临床前研究和临床试验,包裹装置存在氧气传输不佳和功效有限的问题。优化营养物质传输的水凝胶几何装置设计与促进局部血管生成的方法相结合,可能会提高体内包裹细胞的活力和功能。在此,我们通过有限元建模证明,相对于传统的圆柱形设计,高表面积与体积比的螺旋几何形状可以提高包裹胰岛的活力和功能,并且我们在常氧和生理氧条件下在体外验证了这些观察结果。最后,我们在糖尿病大鼠大网膜移植模型中评估了体内包裹的同基因胰岛的存活和功能,并证明相对于传统装置设计,高表面积与体积的水凝胶装置设计改善了包裹的同基因胰岛功能。