Liu Chengxiao, Yu Bin, Zhang Zhaowenbin, Su Lefeng, Wang Ruiqing, Jin Yu, Guo Weiming, Li Ruomei, Zeng Zhen, Mei Peng, Chang Jiang, Xia Lunguo, Yang Chen, Fang Bing
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China; Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Material Science & Engineering, Donghua University, Shanghai, 201620, China.
Biomaterials. 2025 Jun;317:123084. doi: 10.1016/j.biomaterials.2025.123084. Epub 2025 Jan 2.
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method. The scaffold's unique dual action, emanating both chemical and electrical signals, activates the purinergic receptor P2X 1 (P2RX1) calcium ion channel, promoting an influx of intracellular calcium ions. This process results in a synergistic enhancement of both chondrogenic activities of rat chondrocytes (rCCs) and osteogenic activities of rat bone marrow mesenchymal stem cells (rBMSCs). Furthermore, the scaffold's effectiveness in integrating articular cartilage and subchondral bone repair is confirmed in a rat model of joint osteochondral injury. This study thereby offers a groundbreaking approach for treating severe osteoarticular cartilage defects.
同时修复软骨和软骨下骨面临着重大挑战,但对于严重关节损伤的有效治疗至关重要。本研究引入了一种新型可生物降解复合支架,将压电聚-L-乳酸(pPLLA)与富锶硅酸盐生物陶瓷(SrSiO)相结合。这种创新支架在临床认可的低强度脉冲超声(LIPUS)刺激下持续释放生物活性Sr和SiO离子,同时产生电荷。该支架独特的双重作用,即发出化学和电信号,激活嘌呤能受体P2X 1(P2RX1)钙离子通道,促进细胞内钙离子流入。这一过程导致大鼠软骨细胞(rCCs)的软骨生成活性和大鼠骨髓间充质干细胞(rBMSCs)的成骨活性协同增强。此外,在大鼠关节骨软骨损伤模型中证实了该支架在整合关节软骨和软骨下骨修复方面的有效性。因此,本研究为治疗严重骨关节软骨缺损提供了一种开创性的方法。
Mater Sci Eng C Mater Biol Appl. 2019-5-30
Biomaterials. 2018-11-17
ACS Appl Mater Interfaces. 2024-7-24
Mater Today Bio. 2025-7-7