Suppr超能文献

用于瑞加板上非定常微极纳米流体流动的新型数值和人工神经计算及其实验验证

Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate.

作者信息

Bilal Muhammad, Maiz F, Farooq Muhammad, Ahmad Hijaz, Nasrat Mohammad Khalid, Ghazwani Hassan Ali

机构信息

Sheikh Taimur Academic Block-II, Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.

Faculty of Science, Physics Department, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 4;15(1):759. doi: 10.1038/s41598-024-84480-3.

Abstract

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations. The unsteady Micropolar nanofluid (UMNF) flow across a vertically oriented, nonlinearly stretchable Riga sheet is examined in the present study. The effects of variable thermal conductivity, thermophoretic force, and Brownian diffusion on flow and heat transfer are analyzed. The fluid flow has been expressed in the form of a nonlinear system of PDEs (partial differential equations), which are reduced into the non-dimensional form of ordinary differential (ODEs) by employing the similarity transformation approach. The dataset for training the ANNs using the Levenberg-Marquardt backpropagation (LMBP) technique is generated using numerical simulation methods. The influence of physical constraints on the dimensionless temperature, concentration, microrotation, and velocity distributions are graphically displayed and discussed. Numerical results for skin friction, Sherwood, and Nusselt numbers are presented in tabular form. The numerical outcomes are compared to both published numerical and experimental results for validity purposes. It can be noticed that the flow rate is enhanced with the rising influence of the Hartmann number, buoyancy force, and velocity slip parameter. The UMNF flow model is validated, tested, and trained with an average numerical error of 10, ensuring high accuracy in energy, velocity, microorganism motility, and concentration predictions.

摘要

流过 Riga 板的流体流动是在边界层流动和磁流体动力学(MHD)应用中研究的一种特殊现象。Riga 板是一个磁化表面,用于操纵边界层特性并控制流体流动特性。了解流体在 Riga 板上的流动行为在许多应用中至关重要,包括空气动力学、工业和传热操作。本研究考察了不稳定微极纳米流体(UMNF)流过垂直取向、非线性可拉伸 Riga 片的情况。分析了可变热导率、热泳力和布朗扩散对流动和传热的影响。流体流动已表示为偏微分方程(PDEs)的非线性系统形式,通过采用相似变换方法将其简化为常微分方程(ODEs)的无量纲形式。使用数值模拟方法生成用于使用 Levenberg-Marquardt 反向传播(LMBP)技术训练人工神经网络(ANNs)的数据集。以图形方式显示并讨论了物理约束对无量纲温度、浓度、微旋转和速度分布的影响。以表格形式给出了皮肤摩擦、舍伍德数和努塞尔数的数值结果。为了验证目的,将数值结果与已发表的数值和实验结果进行了比较。可以注意到,随着哈特曼数、浮力和速度滑移参数影响的增加,流速会提高。UMNF 流动模型经过验证、测试和训练后,平均数值误差为 10,确保了在能量、速度、微生物运动性和浓度预测方面的高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4053/11700087/d7e97fe3c8e4/41598_2024_84480_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验