Suppr超能文献

Directional intermodular coupling enriches functional complexity in biological neuronal networks.

作者信息

Monma Nobuaki, Yamamoto Hideaki, Fujiwara Naoya, Murota Hakuba, Moriya Satoshi, Hirano-Iwata Ayumi, Sato Shigeo

机构信息

Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan.

Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.

出版信息

Neural Netw. 2025 Apr;184:106967. doi: 10.1016/j.neunet.2024.106967. Epub 2024 Nov 28.

Abstract

Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates. In this study, we fabricated microfluidic devices to reconstitute hierarchically modular neuronal networks in culture (in vitro) and investigated how non-random structures, such as directional connectivity between modules, affect global network dynamics. Embedding directional connections in a pseudo-feedforward manner suppressed excessive synchrony in cultured neuronal networks and enhanced the integration-segregation balance. Modeling the behavior of biological neuronal networks using spiking neural networks (SNNs) further revealed that modularity and directionality cooperate to shape such network dynamics. Finally, we demonstrate that for a given network topology, the statistics of network dynamics, such as global network activation, correlation coefficient, and functional complexity, can be analytically predicted based on eigendecomposition of the transition matrix in the state-transition model. Hence, the integration of bioengineering and cell culture technologies enables us not only to reconstitute complex network circuitry in the nervous system but also to understand the structure-function relationships in biological neuronal networks by bridging theoretical modeling with in vitro experiments.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验