Suppr超能文献

通过工程化NiSe/CoSe异质结增强尿素辅助制氢中的双功能催化作用

Engineering NiSe/CoSe heterojunction for enhanced bifunctional Catalysis in Urea-Assisted hydrogen production.

作者信息

Yuan Shaowu, Wu Yihui, Huang Le, Zhang Zejie, Chen Wenjing, Wang Yuxin

机构信息

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 China.

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 China; Foshan (Southern China) Institute for New Materials, Foshan 528247 China.

出版信息

J Colloid Interface Sci. 2025 Apr;683(Pt 2):981-994. doi: 10.1016/j.jcis.2025.01.005. Epub 2025 Jan 3.

Abstract

Coupling the hydrogen evolution reaction (HER) with the urea oxidation reaction (UOR) represents a highly promising energy-saving strategy for hydrogen production. However, the development of cost-effective and high-performance bifunctional electrocatalysts remains a challenge. In this study, a NiSe/CoSe heterojunction was constructed via electrodeposition, leveraging interfacial synergy to significantly enhance catalytic performance. Experimental results demonstrated that the heterojunction interface between NSe and CoSe greatly improved charge transfer efficiency, optimized the adsorption free energy of H* during HER, and accelerated water dissociation. In situ characterizations and theoretical calculations further revealed that the formation of CoSe facilitated the reconstruction of NiSe, generating more active sites, lowering the kinetic barriers of UOR, and optimizing the adsorption of reaction intermediates on Ni sites. The NiSe/CoSe catalyst exhibited HER and UOR overpotentials of 102 mV and 1.292 V at 10 mA·cm, respectively, with a urea-assisted electrolytic hydrogen production voltage of only 1.348 V at 10 mA·cm. This study provides an innovative strategy for designing high-efficiency bifunctional electrocatalysts.

摘要

将析氢反应(HER)与尿素氧化反应(UOR)耦合是一种极具前景的节能制氢策略。然而,开发具有成本效益且高性能的双功能电催化剂仍然是一项挑战。在本研究中,通过电沉积构建了NiSe/CoSe异质结,利用界面协同作用显著提高催化性能。实验结果表明,NSe和CoSe之间的异质结界面极大地提高了电荷转移效率,优化了HER过程中H*的吸附自由能,并加速了水的解离。原位表征和理论计算进一步表明,CoSe的形成促进了NiSe的重构,产生了更多活性位点,降低了UOR的动力学势垒,并优化了反应中间体在Ni位点上的吸附。NiSe/CoSe催化剂在10 mA·cm时的HER和UOR过电位分别为102 mV和1.292 V,在10 mA·cm时尿素辅助电解制氢电压仅为1.348 V。本研究为设计高效双功能电催化剂提供了一种创新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验