Boumaiza Lamine, Chesnaux Romain, Stotler Randy L, Zahi Faouzi, Mayer Bernhard, Leybourne Matthew I, Otero Neus, Johannesson Karen H, Huneau Frédéric, Schüth Christoph, Knöller Kay, Ortega Lucia, Stumpp Christine
University of Texas at Austin, Department of Earth and Planetary Sciences, Jackson School of Geosciences, Austin, TX 78712, USA.
Université du Québec à Chicoutimi, Département des Sciences Appliquées, Saguenay, Québec G7H 2B1, Canada.
Sci Total Environ. 2025 Jan 10;959:178265. doi: 10.1016/j.scitotenv.2024.178265. Epub 2025 Jan 4.
Several groundwater quality investigations have been conducted in coastal regions that are commonly exposed to multiple anthropogenic stressors. Nonetheless, such studies remain challenging because they require focused-diagnostic approaches for a comprehensive understanding of groundwater contamination. Therefore, this study integrates a multi-tracer approach to acquire comprehensive information allowing for an improved understanding of the origins of groundwater contamination, the relative contribution of contaminants, and their biogeochemical cycling within a coastal groundwater system. This multi-tracer approach, focusing on nitrate (NO) and sulfate (SO) groundwater contamination, is applied to a Mediterranean coastal aquifer underlying an important economically strategic agricultural area. Dissolved NO in groundwater has concentrations up to 89 mg/L, whereas SO concentrations in groundwater are up to 458 mg/L. By integrating isotope tracers (i.e., δN, δO, δB, δS, and δO), NO and SO in the groundwater are found to have originated from multiple anthropogenic and natural sources including synthetic fertilizers, manure, sewage, atmospheric deposition, and marine evaporites. Chemical and isotopic data are coupled to identify the dominant hydro(geo)logic processes and the major subsurface biogeochemical reactions that govern the NO and SO occurrences. Nitrate and SO concentrations are identified to be respectively controlled by nitrification/denitrification and by bacterial dissimilatory SO reduction. Identifying these subsurface biogeochemical processes constrained the Bayesian isotope MixSIAR model, that is used for apportioning the relative contributions of the identified groundwater contamination sources, by informed site-specific isotopic fractionation effects. Results from MixSIAR indicate that manure is distinguished as the predominant source for NO (61 %), whereas SO in groundwater is mostly supplied from two sources (i.e., synthetic fertilizers and soil-derived sulfate) identified with similar contributions (30 %). This study particularly demonstrates the utility of initially describing the subsurface processes, not only to predict the fate of NO and SO concentrations within the groundwater system, but also to constrain the MixSIAR model with justified site-specific isotopic fractionation effects for subsurface transformation processes affecting NO and SO.
在通常受到多种人为压力源影响的沿海地区,已经开展了多项地下水质量调查。尽管如此,此类研究仍然具有挑战性,因为它们需要采用针对性的诊断方法,以便全面了解地下水污染情况。因此,本研究采用了多示踪剂方法,以获取全面信息,从而更好地理解沿海地下水系统中地下水污染的来源、污染物的相对贡献及其生物地球化学循环。这种以硝酸盐(NO)和硫酸盐(SO)地下水污染为重点的多示踪剂方法,应用于一个位于重要经济战略农业区之下的地中海沿海含水层。地下水中溶解的NO浓度高达89毫克/升,而地下水中SO的浓度高达458毫克/升。通过整合同位素示踪剂(即δN、δO、δB、δS和δO),发现地下水中的NO和SO源自多种人为和自然来源,包括合成肥料、粪肥、污水、大气沉降和海洋蒸发盐。结合化学和同位素数据,以确定控制NO和SO存在的主要水文(地球)地质过程和主要地下生物地球化学反应。确定硝酸盐和SO浓度分别受硝化/反硝化作用和细菌异化SO还原作用控制。识别这些地下生物地球化学过程限制了贝叶斯同位素MixSIAR模型,该模型用于通过特定地点的同位素分馏效应来分配已识别的地下水污染源的相对贡献。MixSIAR的结果表明,粪肥被确定为NO的主要来源(61%),而地下水中的SO主要来自两个贡献相似的来源(即合成肥料和土壤衍生的硫酸盐)(30%)。本研究特别证明了初步描述地下过程的实用性,这不仅有助于预测地下水系统中NO和SO浓度的归宿,还能通过影响NO和SO的地下转化过程的合理特定地点同位素分馏效应来限制MixSIAR模型。