Suppr超能文献

在分段虚拟环境中优化情景编码。

Optimising episodic encoding within segmented virtual contexts.

作者信息

Logie Matthew R, Donaldson David I

机构信息

CEA, DRF/Joliot, Neurospin; INSERM, Cognitive Neuroimaging Unit; Université Paris-Saclay, F-91191 Gif/Yvette, France; Department of Psychology, University of Stirling, Stirling FK9 4LA, United Kingdom.

School of Psychology and Neuroscience, University of St. Andrews. KY16 9JP, United Kingdom.

出版信息

Conscious Cogn. 2025 Feb;128:103807. doi: 10.1016/j.concog.2024.103807. Epub 2025 Jan 4.

Abstract

The encoding of episodic memories depends on segmentation; memory performance improves when segmentation is available and performance is impaired when segmentation is absent. Indeed, for episodic memories to be created, the encoding of information into long-term memory requires the experience of event boundaries (i.e., context-shifts defined by salient moments of change between packets of to-be-learned stimuli). According to this view episodic encoding, and therefore learning, is critically dependent on the nature of working memory. Motived by this theoretical framework, here we explore the effects of segmentation on long-term memory performance, investigating the possibility of optimising learning by aligning the presentation of stimuli to the capacity of working memory. Across two experiments, we examined whether manipulating the boundaries between events influences memory. Participants travelled within a virtual environment, with spatial-temporal gaps between virtual locations providing context-shifts to segment sequentially presented lists of words. Both accurate recall and memory for temporal order improve and the number of falsely recalled words reduces when reducing the quantity of information presented between boundaries. Taken together, the present results suggest that closely matching the quantity of information between boundaries to working memory capacity optimises long-term memory performance.

摘要

情景记忆的编码依赖于分割;当有分割时记忆表现会提高,而当没有分割时表现会受损。事实上,为了创建情景记忆,将信息编码到长期记忆中需要经历事件边界(即由待学习刺激包之间显著变化时刻定义的情境转换)。根据这种观点,情景编码以及因此的学习,关键取决于工作记忆的性质。受这一理论框架的推动,我们在此探讨分割对长期记忆表现的影响,研究通过使刺激呈现与工作记忆容量相匹配来优化学习的可能性。在两个实验中,我们研究了操纵事件之间的边界是否会影响记忆。参与者在虚拟环境中移动,虚拟位置之间的时空间隙提供情境转换,以分割顺序呈现的单词列表。当减少边界之间呈现的信息量时,准确回忆和时间顺序记忆都会提高,错误回忆的单词数量会减少。综上所述,目前的结果表明,使边界之间的信息量与工作记忆容量紧密匹配可优化长期记忆表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验