Chen Hao, Gou Longfei, Fang Zhiwen, Dou Qi, Chen Haobin, Chen Chang, Qiu Yuqing, Zhang Jinglin, Ning Chenglin, Hu Yanfeng, Deng Haijun, Yu Jiang, Li Guoxin
Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.
School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
NPJ Digit Med. 2025 Jan 5;8(1):9. doi: 10.1038/s41746-024-01372-6.
Laparoscopic exploration (LE) is crucial for diagnosing intra-abdominal metastasis (IAM) in advanced gastric cancer (GC). However, overlooking single, tiny, and occult IAM lesions during LE can severely affect the treatment and prognosis due to surgeons' visual misinterpretations. To address this, we developed the artificial intelligence laparoscopic exploration system (AiLES) to recognize IAM lesions with various metastatic extents and locations. The AiLES was developed based on a dataset consisting of 5111 frames from 100 videos, using 4130 frames for model development and 981 frames for evaluation. The AiLES achieved a Dice score of 0.76 and a recognition speed of 11 frames per second, demonstrating robust performance in different metastatic extents (0.74-0.76) and locations (0.63-0.90). Furthermore, AiLES performed comparably to novice surgeons in IAM recognition and excelled in recognizing tiny and occult lesions. Our results demonstrate that the implementation of AiLES could enhance accurate tumor staging and assist individualized treatment decisions.
腹腔镜探查(LE)对于诊断晚期胃癌(GC)的腹腔内转移(IAM)至关重要。然而,由于外科医生的视觉误判,在LE过程中忽略单个、微小和隐匿的IAM病变会严重影响治疗和预后。为了解决这个问题,我们开发了人工智能腹腔镜探查系统(AiLES),以识别具有不同转移范围和位置的IAM病变。AiLES是基于一个由100个视频中的5111帧组成的数据集开发的,其中4130帧用于模型开发,981帧用于评估。AiLES的Dice评分为0.76,识别速度为每秒11帧,在不同的转移范围(0.74 - 0.76)和位置(0.63 - 0.90)上表现出强大的性能。此外,AiLES在IAM识别方面与新手外科医生表现相当,在识别微小和隐匿病变方面表现出色。我们的结果表明,AiLES的应用可以提高肿瘤分期的准确性,并有助于做出个体化的治疗决策。