Ye Baofeng, Xue Renzheng, Wu Qianlong
School of Computer and Control Engineering, Qiqihar University, Qiqihar, 161003, China.
Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161000, China.
Sci Rep. 2025 Jan 6;15(1):872. doi: 10.1038/s41598-024-84685-6.
In semantic segmentation research, spatial information and receptive fields are essential. However, currently, most algorithms focus on acquiring semantic information and lose a significant amount of spatial information, leading to a significant decrease in accuracy despite improving real-time inference speed. This paper proposes a new method to address this issue. Specifically, we have designed a new module (HFRM) that combines channel attention and spatial attention to retrieve the spatial information lost during downsampling and enhance object classification accuracy. Regarding fusing spatial and semantic information, we have designed a new module (HFFM) to merge features of two different levels more effectively and capture a larger receptive field through an attention mechanism. Additionally, edge detection methods have been incorporated to enhance the extraction of boundary information. Experimental results demonstrate that for an input size of 512 × 1024, our proposed method achieves 73.6% mIoU at 176 frames per second (FPS) on the Cityscapes dataset and 70.0% mIoU at 146 FPS on Camvid. Compared to existing networks, our Model achieves faster inference speed while maintaining accuracy, enhancing its practicality.
在语义分割研究中,空间信息和感受野至关重要。然而,目前大多数算法专注于获取语义信息,丢失了大量空间信息,尽管提高了实时推理速度,但导致准确率大幅下降。本文提出了一种新方法来解决这个问题。具体来说,我们设计了一个新模块(HFRM),它结合了通道注意力和空间注意力,以检索下采样过程中丢失的空间信息,并提高目标分类准确率。关于融合空间和语义信息,我们设计了一个新模块(HFFM),通过注意力机制更有效地合并两个不同层次的特征,并捕获更大的感受野。此外,还引入了边缘检测方法来增强边界信息的提取。实验结果表明,对于512×1024的输入尺寸,我们提出的方法在Cityscapes数据集上以每秒176帧(FPS)的速度实现了73.6%的平均交并比(mIoU),在Camvid数据集上以每秒146帧的速度实现了70.0%的mIoU。与现有网络相比,我们的模型在保持准确率的同时实现了更快的推理速度,提高了其实用性。