Suppr超能文献

利用社会调查和气候数据评估美国公众对全球变暖的认知。

Assessing U.S. public perceptions of global warming using social survey and climate data.

作者信息

Wei Xiaoxiao, Bohnett Eve, An Li

机构信息

College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, United States.

International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, 602 Duncan Drive, Auburn, AL 36849, United States.

出版信息

MethodsX. 2024 Dec 6;14:103081. doi: 10.1016/j.mex.2024.103081. eCollection 2025 Jun.

Abstract

This paper presents a methodological approach for assessing the relationship between weather patterns, regional climate trends, and public perceptions of global warming in the United States with control of socioeconomic, political, and ideological variables. We combined social survey data from the Gallup Poll Social Series (GPSS) with environmental data from the National Oceanic and Atmospheric Administration (NOAA) and the PRISM Climate Group. Logistic regression models were employed, enhanced by Eigenvector Spatial Filtering (ESF) to address spatial autocorrelation. This approach allowed us to examine how both short-term weather conditions and long-term climate changes impact public concerns about global warming. Notably, the perception of warmer winters emerged as a critical factor influencing attitudes, highlighting the importance of perceived environmental changes in shaping public opinion.•We combined survey data on public perceptions with high-resolution weather and climate data.•We applied logistic regression models with Eigenvector Spatial Filtering to control for spatial autocorrelation.•Our analysis emphasized both physical climate measures and perceived climate changes.

摘要

本文提出了一种方法,用于评估美国天气模式、区域气候趋势与公众对全球变暖的认知之间的关系,同时控制社会经济、政治和意识形态变量。我们将盖洛普民意调查社会系列(GPSS)的社会调查数据与美国国家海洋和大气管理局(NOAA)及PRISM气候小组的环境数据相结合。采用了逻辑回归模型,并通过特征向量空间滤波(ESF)进行增强,以解决空间自相关问题。这种方法使我们能够研究短期天气状况和长期气候变化如何影响公众对全球变暖的担忧。值得注意的是,对暖冬的认知成为影响态度的关键因素,凸显了感知到的环境变化在塑造公众舆论方面的重要性。

  • 我们将公众认知的调查数据与高分辨率天气和气候数据相结合。

  • 我们应用了带有特征向量空间滤波的逻辑回归模型来控制空间自相关。

  • 我们的分析强调了物理气候指标和感知到的气候变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92fd/11699436/0a6df634042f/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验