Walle Yibekal, Mugisha Joseph Y T, Melese Dawit, Tessema Haileyesus
Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia.
Department of Mathematics, Makerere University, Kampala, Uganda.
Heliyon. 2024 Dec 9;10(24):e41016. doi: 10.1016/j.heliyon.2024.e41016. eCollection 2024 Dec 30.
Peste des Petits Ruminants (PPR) is a highly contagious transboundary viral disease of small ruminants with significant economic implications caused by the Peste des Petits Ruminants virus. This study employs mathematical modeling to investigate the impact of imperfect PPR vaccines and restocked small ruminants on the transmission dynamics of PPR. A deterministic mathematical model is developed by incorporating vaccinated and restocked subpopulations into the classical SEIR model. The influence of infected animals introduced through restocking on vaccination efficacy in preventing PPR spread is examined. The global dynamics of equilibrium points in the model are analyzed using the Lyapunov-LaSalle invariance principle. Parameter values for numerical simulations are estimated based on monthly PPR data from the Amhara regional state in Ethiopia, obtained from the Ministry of Agriculture. The basic reproduction number ( ) is calculated to assess the level of PPR in the small ruminant population, and sensitivity analysis of parameters is performed on . The analytical and numerical results reveal that infected restocked small ruminants significantly facilitate the spread of PPR in the population. Moreover, even with high efficacy vaccination, the system exhibits a unique asymptotically stable endemic equilibrium. These findings emphasize that appropriate vaccination alone is insufficient to control and eradicate PPR in the region. Implementing strict movement restrictions and biosecurity measures are necessary. These findings provide valuable insights for national policymakers in achieving the regional and national targets for PPR eradication by 2027.
小反刍兽疫(PPR)是由小反刍兽疫病毒引起的一种具有高度传染性的小反刍动物跨界病毒性疾病,具有重大经济影响。本研究采用数学建模方法,研究不完全有效的PPR疫苗和补栏小反刍动物对PPR传播动力学的影响。通过将接种疫苗和补栏的亚群体纳入经典的SEIR模型,建立了一个确定性数学模型。研究了补栏引入的感染动物对疫苗预防PPR传播效果的影响。利用Lyapunov-LaSalle不变性原理分析了模型平衡点的全局动力学。基于从埃塞俄比亚阿姆哈拉州农业部获得的PPR月度数据,估计了数值模拟的参数值。计算基本再生数( )以评估小反刍动物群体中PPR的水平,并对 进行参数敏感性分析。分析和数值结果表明,补栏引入的感染小反刍动物显著促进了PPR在群体中的传播。此外,即使疫苗效力很高,该系统仍表现出唯一的渐近稳定地方病平衡点。这些发现强调,仅靠适当的疫苗接种不足以控制和根除该地区的PPR。实施严格的移动限制和生物安全措施是必要的。这些发现为国家政策制定者实现到2027年根除PPR的区域和国家目标提供了有价值的见解。