Suppr超能文献

超越方氏之怒:蛇毒磷脂酶A毒素的酶-膜相互作用及催化途径的计算研究

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

作者信息

Castro-Amorim Juliana, Pinto Alexandre V, Mukherjee Ashis K, Ramos Maria J, Fernandes Pedro A

机构信息

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Institute of Advanced Study in Science and Technology Vigyan Path Garchuk, Paschim Boragaon Guwahati-781035 Assam India.

出版信息

Chem Sci. 2025 Jan 2;16(4):1974-1985. doi: 10.1039/d4sc06511e. eCollection 2025 Jan 22.

Abstract

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease. We study a member of the svPLA family, the Myotoxin-I, which is part of the venom of the Central American pit viper terciopelo (), a ubiquitous but highly aggressive and dangerous species responsible for the most problematic snakebites in its habitat. Furthermore, PLA enzymes are a paradigm of interfacial enzymology, as the complex membrane-enzyme interaction is as important as is crucial for its catalytic process. Here, we explore the detailed interaction between svPLA and a 1 : 1 POPC/POPS membrane, and how enzyme binding affects membrane structure and dynamics. We further investigated the two most widely accepted reaction mechanisms for svPLAs: the 'single-water mechanism' and the 'assisted-water mechanism', using umbrella sampling simulations at the PBE/MM level of theory. We demonstrate that both pathways are catalytically viable. While both pathways occur in two steps, the single-water mechanism yielded a lower activation free energy barrier (20.14 kcal mol) for POPC hydrolysis, consistent with experimental and computational values obtained for human PLA. The reaction mechanisms are similar, albeit not identical, and can be generalized to svPLA from most viper species. Furthermore, our findings demonstrate that the sole small molecule inhibitor currently undergoing clinical trials for snakebite is a perfect transition state analog. Thus, understanding snake venom sPLA chemistry will help find new, effective small molecule inhibitors with anti-snake venom efficacy.

摘要

蛇毒分泌的磷脂酶A(svPLAs)是几乎所有蛇毒中都存在的关键且剧毒的酶。被蛇咬伤中毒时,svPLAs会水解细胞膜磷脂并引发诸如麻痹、肌坏死、炎症或疼痛等病理效应。尽管其在中毒过程中至关重要,但其化学作用机制却知之甚少,这对小分子蛇咬解毒剂的设计产生了不利影响,鉴于蛇咬被列为最致命的被忽视热带病的流行病学数据的严重性,这是非常不可取的。我们研究了svPLA家族的一个成员——肌毒素-I,它是中美洲矛头蝮蛇()毒液的一部分,这种蛇分布广泛但极具攻击性且危险,在其栖息地造成了最严重的蛇咬伤问题。此外,PLA酶是界面酶学的一个范例,因为复杂的膜 - 酶相互作用与其催化过程一样重要。在这里,我们探索了svPLA与1:1的POPC/POPS膜之间的详细相互作用,以及酶结合如何影响膜的结构和动力学。我们还使用PBE/MM理论水平的伞形采样模拟,进一步研究了svPLAs两种最被广泛接受的反应机制:“单水机制”和“辅助水机制”。我们证明这两种途径在催化方面都是可行的。虽然这两种途径都分两步进行,但单水机制对POPC水解产生的活化自由能垒较低(20.14千卡/摩尔),这与人类PLA获得的实验和计算值一致。反应机制相似但不完全相同,并且可以推广到大多数蝰蛇种类的svPLA。此外,我们的研究结果表明,目前正在进行蛇咬临床试验的唯一小分子抑制剂是一种完美的过渡态类似物。因此,了解蛇毒sPLA化学将有助于找到具有抗蛇毒功效的新型有效小分子抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8810/11753024/22102d7ca79a/d4sc06511e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验