Díaz-Ramírez Mariana L, Park Sun Ho, Rivera-Almazo Marcos, Medel Erika, Peralta Ricardo A, Ibarra Ilich A, Vargas Rubicelia, Garza Jorge, Jeong Nak Cheon
Department of Physics & Chemistry, DGIST Daegu 42988 Korea
Center for Basic Science, DGIST Daegu 42988 Korea.
Chem Sci. 2024 Dec 23;16(6):2581-2588. doi: 10.1039/d4sc07011a. eCollection 2025 Feb 5.
Metal-organic frameworks (MOFs), characterized by dynamic metal-ligand coordination bonding, have pivotal roles in catalysis, gas storage, and separation processes, owing to their open metal sites (OMSs). These sites, however, are frequently occupied by Lewis-base solvent molecules, necessitating activation to expose the OMSs for practical applications. Traditional thermal activation methods involve harsh conditions, risking structural integrity. This study presents a novel 'gas-flow activation' technique using inert gases like nitrogen and argon to eliminate these coordinating solvent molecules at low temperatures, thereby maintaining the structural integrity of MOFs. We specifically explored this method with HKUST-1, demonstrating that gas-flow activation at mild temperatures is not only feasible but also superior in efficiency compared to the conventional thermal methods. This approach highlights the potential for safer, more efficient activation processes in MOF applications, making it a valuable addition to the repertoire of MOF activation techniques. This activation function of inert gas flow allows HKUST-1 as a catalyst for the hydrogenation of acetophenone even at room temperature. In addition, it is demonstrated that this 'gas-flow activation' is broadly applicable in other MOFs such as MOF-14 and UTSA-76. Furthermore, the findings reveal that dynamic coordination bonding, the repeating transient dissociation-association of solvent molecules at OMSs, are key mechanisms in facilitating this activation, pointing towards new directions for designing activation strategies that prevent structural damage.
金属有机框架材料(MOFs)以动态的金属-配体配位键为特征,由于其开放金属位点(OMSs),在催化、气体储存和分离过程中发挥着关键作用。然而,这些位点经常被路易斯碱溶剂分子占据,因此需要进行活化以暴露开放金属位点用于实际应用。传统的热活化方法条件苛刻,存在破坏结构完整性的风险。本研究提出了一种新颖的“气流活化”技术,使用氮气和氩气等惰性气体在低温下去除这些配位溶剂分子,从而保持MOFs的结构完整性。我们特别以HKUST-1对该方法进行了探索,结果表明在温和温度下进行气流活化不仅可行,而且与传统热方法相比效率更高。这种方法凸显了在MOF应用中实现更安全、更高效活化过程的潜力,使其成为MOF活化技术中的一项有价值的补充。即使在室温下,惰性气体流的这种活化功能也能使HKUST-1作为苯乙酮加氢反应的催化剂。此外,研究表明这种“气流活化”在其他MOFs如MOF-14和UTSA-76中也具有广泛的适用性。此外,研究结果表明,动态配位键,即溶剂分子在开放金属位点处反复发生的瞬时解离-缔合,是促进这种活化的关键机制,为设计防止结构破坏的活化策略指明了新方向。