Nguyen Cong Hong Nhat, Nguyen Dinh Truong, Le Trung Hieu, Le Lam Son, Thi Phan Nga Hang, Nguyen Thi-Thao-Van, Tiep Nguyen Van, Korneeva Ekaterina, Luu Anh Tuyen, Dao My Uyen, Nguyen Dinh Minh Tuan, Nguyen Chinh Chien
Hue University of Sciences, Hue University Hue City 530000 Vietnam.
School of Medicine and Pharmacy, The University of Danang Danang 550000 Vietnam.
Nanoscale Adv. 2024 Dec 16;7(4):1118-1124. doi: 10.1039/d4na00892h. eCollection 2025 Feb 11.
Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO /β-Ni(OH) composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized a unique hydrothermal approach under the co-participation of glycerol and acetic acid. The employed characterizations unveil a close CeO /β-Ni(OH) interfacial contact and numerous surface defects (, oxygen vacancies). Such features significantly result in a significant enhancement in the electrocatalytic glucose oxidation reaction. Indeed, the obtained Ce@NF-GA catalyst demands a low potential of 1.31 V to reach a current density of 10 mA cm. Additionally, Ce@NF-GA exhibited a high charge transportation capability and stability for 3 consecutive working cycles, corresponding to an outstanding Faradaic efficiency of ∼100% toward hydrogen production. The exploration of such novel material discloses a potential pathway for the utilization of Ce-based electrocatalysts for the energy-saving hydrogen production-coupled glucose oxidation reaction.
电解葡萄糖氧化在节能制氢方面引起了极大的关注。然而,高电荷转移电阻和低效的活性中心被认为是电化学性能不佳的主要问题。在本研究中,我们首次提供了一种新型的富含缺陷的CeO /β-Ni(OH)复合纳米片修饰的泡沫镍电催化剂(记为Ce@NF-GA),通过在甘油和乙酸的共同参与下采用独特的水热法合成。所采用的表征揭示了CeO /β-Ni(OH)之间紧密的界面接触和大量的表面缺陷(即氧空位)。这些特征显著导致电催化葡萄糖氧化反应的显著增强。实际上,所制备的Ce@NF-GA催化剂在1.31 V的低电位下即可达到10 mA cm的电流密度。此外,Ce@NF-GA在连续3个工作循环中表现出高电荷传输能力和稳定性,对应于高达约100%的出色析氢法拉第效率。对这种新型材料的探索为利用基于Ce的电催化剂实现节能的产氢耦合葡萄糖氧化反应揭示了一条潜在途径。