Suppr超能文献

用于天体生物学模拟的FeP磷铁镍矿密度泛函紧束缚模型的创建。

Creation of an FeP Schreibersite Density Functional Tight Binding Model for Astrobiological Simulations.

作者信息

Dettori Riccardo, Goldman Nir

机构信息

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

Department of Physics, University of Cagliari, Monserrato, CA 09042, Italy.

出版信息

J Phys Chem A. 2025 Jan 16;129(2):583-595. doi: 10.1021/acs.jpca.4c05881. Epub 2025 Jan 6.

Abstract

The mineral schreibersite, e.g., FeP, is commonly found in iron-rich meteorites and could have served as an abiotic phosphorus source for prebiotic chemistry. However, atomistic calculations of its degradation chemistry generally require quantum simulation approaches, which can be too computationally cumbersome to study sufficient time and length scales for this process. In this regard, we have created a computationally efficient semiempirical quantum density functional tight binding (DFTB) model for iron and phosphorus-containing materials by adopting an existing semiautomated workflow that represents many-body interactions by linear combinations of Chebyshev polynomials. We have utilized a relatively small training set to optimize a DFTB model that is accurate for schreibersite physical and chemical properties, including its bulk properties, surface energies, and water absorption. We then show that our model shows strong transferability to several iron phosphide solids as well as multiple allotropes of iron metal. Our resulting DFTB parametrization will allow us to interrogate schreibersite aqueous decomposition at longer time and length scales than standard quantum approaches, providing for more detailed investigations of its role in prebiotic chemistry on early Earth.

摘要

例如FeP的磷铁镍矿通常存在于富铁陨石中,并且可能曾作为前生物化学的非生物磷源。然而,对其降解化学的原子计算通常需要量子模拟方法,这对于研究该过程足够的时间和长度尺度来说计算量过于庞大。在这方面,我们通过采用现有的半自动工作流程创建了一种计算效率高的半经验量子密度泛函紧束缚(DFTB)模型,该工作流程通过切比雪夫多项式的线性组合来表示多体相互作用。我们利用了一个相对较小的训练集来优化一个DFTB模型,该模型对于磷铁镍矿的物理和化学性质,包括其体相性质、表面能和吸水性都是准确的。然后我们表明,我们的模型对几种磷化铁固体以及铁金属的多种同素异形体具有很强的转移性。我们最终得到的DFTB参数化将使我们能够比标准量子方法在更长的时间和长度尺度上研究磷铁镍矿的水相分解,从而对其在早期地球前生物化学中的作用进行更详细的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验