Suppr超能文献

使用可在不同诊所间转移的机器学习模型预测1型糖尿病青少年的糖尿病酮症酸中毒风险并进行排序

Predicting and Ranking Diabetic Ketoacidosis Risk Among Youth with Type 1 Diabetes with a Clinic-to-Clinic Transferrable Machine Learning Model.

作者信息

Vandervelden Craig, Lockee Brent, Barnes Mitchell, Tallon Erin M, Williams David D, Kahkoska Anna, Cristello Sarteau Angelica, Patton Susana R, Sonabend Rona Y, Kohlenberg Jacob D, Clements Mark A

机构信息

Children's Mercy Kansas City, Endocrinology, Kansas City, Missouri, USA.

Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Diabetes Technol Ther. 2025 Apr;27(4):271-282. doi: 10.1089/dia.2024.0484. Epub 2025 Jan 6.

Abstract

To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S. diabetes centers and chose a compact set of 15 features (e.g., demographics, factors related to diabetes management, etc.) to yield "explainable AI" predictions for DKA risk on a 6-month horizon. We used an ensemble of gradient-boosted, tree-based models trained on data collected from September 1, 2017 to November 1, 2022 (3097 unique patients; 24,638 clinical encounters) from a tertiary care pediatric diabetes clinic network in the Midwest USA. We rank-ordered the top 10, 25, 50, and 100 highest-risk youth in an out-of-sample testing set, which yielded an average precision of 0.96, 0.81, 0.75, and 0.70, respectively. The lift of the model (relative to random selection) for the top 100 individuals is 19. The model identified average time between DKA episodes, time since the last DKA episode, and T1D duration as the top three features for predicting DKA risk. Our DKA risk model effectively predicts youths' relative risk of experiencing hospitalization for DKA and is readily deployable to other diabetes centers that map diabetes data to the T1DX-QI schema. This model may facilitate the development of targeted interventions for youths at the highest risk for DKA. Future work will add novel features such as device data, social determinants of health, and diabetes self-management behaviors.

摘要

利用电子健康记录(EHR)数据开发一个可扩展且可转移的模型,以预测1型糖尿病(T1D)青少年发生糖尿病酮症酸中毒(DKA)相关住院或急诊护理的6个月风险。为了实现一个可共享的预测模型,我们使用映射到美国60多家糖尿病中心所采用的T1D交换质量改进协作组织(T1DX-QI)数据模式的EHR数据来设计特征,并选择了一组精简的15个特征(如人口统计学、与糖尿病管理相关的因素等),以便在6个月的时间范围内对DKA风险做出“可解释的人工智能”预测。我们使用了一组基于梯度提升的树模型,这些模型是根据从2017年9月1日至2022年11月1日在美国中西部一个三级护理儿科糖尿病诊所网络收集的数据进行训练的(3097名独特患者;24638次临床就诊)。我们在一个样本外测试集中对风险最高的前10名、25名、50名和100名青少年进行了排序,其平均精确率分别为0.96、0.81、0.75和0.70。该模型对前100名个体的提升度(相对于随机选择)为19。该模型将DKA发作之间的平均时间、自上次DKA发作以来的时间以及T1D病程确定为预测DKA风险的前三大特征。我们的DKA风险模型有效地预测了青少年发生DKA住院的相对风险,并且可以很容易地部署到其他将糖尿病数据映射到T1DX-QI模式的糖尿病中心。该模型可能有助于为DKA风险最高的青少年制定有针对性的干预措施。未来工作将添加诸如设备数据、健康的社会决定因素和糖尿病自我管理行为等新特征。

相似文献

4
Subcutaneous rapid-acting insulin analogues for diabetic ketoacidosis.用于糖尿病酮症酸中毒的皮下速效胰岛素类似物。
Cochrane Database Syst Rev. 2016 Jan 21;2016(1):CD011281. doi: 10.1002/14651858.CD011281.pub2.

本文引用的文献

10
CatBoost for big data: an interdisciplinary review.用于大数据的CatBoost:跨学科综述
J Big Data. 2020;7(1):94. doi: 10.1186/s40537-020-00369-8. Epub 2020 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验