Suppr超能文献

上消化道内镜诊断的胃溃疡中溃疡特征在预测恶性肿瘤方面的表现

Performance of Ulcer Features in Predicting Malignancy Among Gastric Ulcers Diagnosed on Upper Endoscopy.

作者信息

Patel Ankur P, Gandle Cassandra, Baerman Elliot, Lill Isaac, Pecha Robert L, Nguyen Wenker Theresa H, El-Serag Hashem B, Ketwaroo Gyanprakash A, Tan Mimi C

机构信息

Department of Medicine, Baylor College of Medicine, Houston, TX.

Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX.

出版信息

J Clin Gastroenterol. 2024 Dec 27. doi: 10.1097/MCG.0000000000002118.

Abstract

OBJECTIVE

Even though the prevalence of malignancy within gastric ulcers is low, surveillance endoscopy is routinely performed after gastric ulcer diagnosis resulting in unnecessary costs and risks. Endoscopic appearance may be used to identify ulcers with malignant features and guide decisions regarding the need for surveillance endoscopy. Our aim was to assess the predictive value of several endoscopic ulcer features with the risk of prevalent malignancy in patients diagnosed with gastric ulcers.

METHODS

Patients with gastric ulcers were identified using endoscopic reporting software in 2 hospitals in Houston, TX, from February 2019 to July 2021. Malignant and benign gastric ulcers were defined using ulcer biopsy histopathology, and ulcers that had healed on surveillance endoscopy were also classified as benign ulcers. Potential endoscopy-related predictors of malignant ulcers included: Forrest classification, location, size, elevated border, irregular border, and background gastric atrophy.

RESULTS

We identified 338 patients with gastric ulcers, and 150 (44%) had at least one surveillance endoscopy. Malignant ulcers were found in 41 patients (12%). The strongest predictors of malignancy were irregular border [area under receiver operating characteristic (AUROC): 0.89, 95% CI: 0.80-0.97], gastric atrophy on histopathology (AUROC: 0.87, 95% CI: 0.78-0.96), and elevated border (AUROC: 0.84, 95% CI: 0.73-0.95). A multivariate model including corpus/cardia location, irregular border, elevated border, and gastric atrophy on histopathology had the best discrimination for predicting malignant ulcers (AUROC: 0.96, 95% CI: 0.93-0.98) with low false negatives (0.4%).

CONCLUSIONS

A model combining corpus/cardia location, irregular border, elevated border, and gastric atrophy on histopathology best-predicted malignancy in gastric ulcers and may identify patients with the most benefit from surveillance endoscopy.

摘要

目的

尽管胃溃疡恶变的发生率较低,但胃溃疡诊断后仍常规进行监测性内镜检查,这会导致不必要的费用和风险。内镜表现可用于识别具有恶性特征的溃疡,并指导有关是否需要进行监测性内镜检查的决策。我们的目的是评估几种内镜下溃疡特征对诊断为胃溃疡患者发生普遍恶变风险的预测价值。

方法

2019年2月至2021年7月,在德克萨斯州休斯顿的2家医院使用内镜报告软件识别胃溃疡患者。根据溃疡活检组织病理学定义恶性和良性胃溃疡,监测性内镜检查时已愈合的溃疡也归类为良性溃疡。恶性溃疡潜在的与内镜相关的预测因素包括:福雷斯特分类、位置、大小、边界隆起、边界不规则以及背景胃萎缩。

结果

我们识别出338例胃溃疡患者,其中150例(44%)至少接受过一次监测性内镜检查。41例患者(12%)发现恶性溃疡。最强的恶变预测因素是边界不规则[受试者操作特征曲线下面积(AUROC):0.89,95%置信区间:0.80-0.97]、组织病理学上的胃萎缩(AUROC:0.87,95%置信区间:0.78-0.96)以及边界隆起(AUROC:0.84,95%置信区间:0.73-0.95)。一个包括胃体/贲门部位置、边界不规则、边界隆起以及组织病理学上的胃萎缩的多变量模型对预测恶性溃疡具有最佳的辨别力(AUROC:0.96,95%置信区间:0.93-0.98),假阴性率低(0.4%)。

结论

一个结合胃体/贲门部位置、边界不规则、边界隆起以及组织病理学上的胃萎缩的模型对胃溃疡恶变具有最佳预测能力,并且可能识别出最能从监测性内镜检查中获益的患者。

相似文献

5
Dressings and topical agents for treating venous leg ulcers.用于治疗下肢静脉溃疡的敷料和外用剂。
Cochrane Database Syst Rev. 2018 Jun 15;6(6):CD012583. doi: 10.1002/14651858.CD012583.pub2.
6
Dressings and topical agents for treating pressure ulcers.用于治疗压疮的敷料和外用剂。
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2.
8
Non-invasive diagnostic tests for Helicobacter pylori infection.幽门螺杆菌感染的非侵入性诊断测试。
Cochrane Database Syst Rev. 2018 Mar 15;3(3):CD012080. doi: 10.1002/14651858.CD012080.pub2.

本文引用的文献

4
Risk stratifying gastric ulcers: development and validation of a scoring system.胃溃疡的风险分层:一种评分系统的开发与验证
Frontline Gastroenterol. 2021 Feb 26;13(2):111-118. doi: 10.1136/flgastro-2020-101759. eCollection 2022.
8
Peptic ulcer disease.消化性溃疡病
BMJ. 2019 Oct 2;367:l5495. doi: 10.1136/bmj.l5495.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验