Suppr超能文献

单细胞蛋白质组学中的数据整合基准

Benchmark of Data Integration in Single-Cell Proteomics.

作者信息

Gong Yaguo, Dai Yangbo, Wu Qibiao, Guo Li, Yao Xiaojun, Yang Qingxia

机构信息

School of Pharmacy, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.

State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

出版信息

Anal Chem. 2025 Jan 21;97(2):1254-1263. doi: 10.1021/acs.analchem.4c04933. Epub 2025 Jan 6.

Abstract

Single-cell proteomics (SCP) detected based on different technologies always involves batch-specific variations because of differences in sample processing and other potential biases. How to integrate SCP data effectively has become a great challenge. Integration of SCP data not only requires the conservation of true biological variances, but also realizes the removal of unwanted batch effects. In this study, benchmarking analysis of popular data integration methods was conducted to determine the most suitable method for SCP data. To comprehensively evaluate the performance of these integration methods, a novel evaluation system was proposed for integrating SCP data. This evaluation system consists of three objective measures from different perspectives: category (), the efficacy of correcting batch effects; category (), the power of conserving biological variances; and category (), the ability to identify consistent markers. For this comprehensive evaluation, five benchmark data sets under different scenarios (containing substantial proteins, substantial cells, multiple batches, multiple cell types, and unbalanced data) were utilized for selecting the most suitable data integration method. As a result, three methods, ComBat, Scanorama, and Seurat version 3 CCA, were identified as the most recommended methods for integrating SCP data. Overall, this systematic evaluation might provide valuable guidance in choosing the appropriate method for data integration in the SCP.

摘要

基于不同技术检测的单细胞蛋白质组学(SCP)由于样本处理差异和其他潜在偏差,总是涉及批次特异性变异。如何有效整合SCP数据已成为一项巨大挑战。SCP数据的整合不仅需要保留真实的生物学差异,还需要消除不必要的批次效应。在本研究中,对流行的数据整合方法进行了基准分析,以确定最适合SCP数据的方法。为了全面评估这些整合方法的性能,提出了一种用于整合SCP数据的新型评估系统。该评估系统由来自不同视角的三个客观指标组成:类别(),校正批次效应的功效;类别(),保留生物学差异的能力;以及类别(),识别一致性标志物的能力。为了进行这种全面评估,利用了不同场景下的五个基准数据集(包含大量蛋白质、大量细胞、多个批次、多种细胞类型和不平衡数据)来选择最合适的数据整合方法。结果,ComBat、Scanorama和Seurat版本3 CCA这三种方法被确定为整合SCP数据的最推荐方法。总体而言,这种系统评估可能为选择SCP中合适的数据整合方法提供有价值的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验