Suppr超能文献

基于 scp 包的基于质谱的单细胞蛋白质组学数据处理和分析的标准化工作流程。

Standardized Workflow for Mass-Spectrometry-Based Single-Cell Proteomics Data Processing and Analysis Using the scp Package.

机构信息

Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium.

Protein Phosphorylation Unit, de Duve Institute, UCLouvain, Brussels, Belgium.

出版信息

Methods Mol Biol. 2024;2817:177-220. doi: 10.1007/978-1-0716-3934-4_14.

Abstract

Mass-spectrometry (MS)-based single-cell proteomics (SCP) explores cellular heterogeneity by focusing on the functional effectors of the cells-proteins. However, extracting meaningful biological information from MS data is far from trivial, especially with single cells. Currently, data analysis workflows are substantially different from one research team to another. Moreover, it is difficult to evaluate pipelines as ground truths are missing. Our team has developed the R/Bioconductor package called scp to provide a standardized framework for SCP data analysis. It relies on the widely used QFeatures and SingleCellExperiment data structures. In addition, we used a design containing cell lines mixed in known proportions to generate controlled variability for data analysis benchmarking. In this chapter, we provide a flexible data analysis protocol for SCP data using the scp package together with comprehensive explanations at each step of the processing. Our main steps are quality control on the feature and cell level, aggregation of the raw data into peptides and proteins, normalization, and batch correction. We validate our workflow using our ground truth data set. We illustrate how to use this modular, standardized framework and highlight some crucial steps.

摘要

基于质谱(MS)的单细胞蛋白质组学(SCP)通过关注细胞的功能效应器 - 蛋白质来探索细胞异质性。然而,从 MS 数据中提取有意义的生物学信息远非易事,尤其是对于单细胞。目前,数据分析工作流程在不同的研究团队之间有很大的不同。此外,由于缺乏基准,很难评估管道。我们的团队开发了名为 scp 的 R/Bioconductor 包,为 SCP 数据分析提供了标准化框架。它依赖于广泛使用的 QFeatures 和 SingleCellExperiment 数据结构。此外,我们使用了包含以已知比例混合的细胞系的设计,为数据分析基准测试生成可控制的变异性。在本章中,我们使用 scp 包提供了一种灵活的 SCP 数据分析协议,并在处理的每个步骤都提供了全面的解释。我们的主要步骤是对特征和细胞进行质量控制,将原始数据聚合到肽和蛋白质中,进行标准化和批次校正。我们使用我们的真实数据集验证我们的工作流程。我们说明了如何使用这个模块化、标准化的框架,并强调了一些关键步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验