Chang Chih-Wei, Tian Zhen, Qiu Richard L J, Scott Mcginnis H, Bohannon Duncan, Patel Pretesh, Wang Yinan, Yu David S, Patel Sagar A, Zhou Jun, Yang Xiaofeng
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308, United States of America.
Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, United States of America.
Phys Med Biol. 2025 Jan 17;70(2):025010. doi: 10.1088/1361-6560/ada684.
This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept to improve treatment quality.. A retrospective study on two-fraction prostate proton SBRT was conducted, involving a cohort of 10 randomly selected patient cases from an institutional database (= 43). DT-based treatment plans were developed using patient-specific CTV setup uncertainty, determined through machine learning predictions. Plans were optimized using pre-treatment CT and corrected cone-beam CT (cCBCT). The cCBCT was corrected for CT numbers and artifacts, and plan evaluation was performed using cCBCT to account for actual patient anatomy. The ProKnow scoring system was adapted to determine the optimal treatment plans.Average CTV D98 values for original clinical and DT-based plans across 10 patients were 99.0% and 98.8%, with hot spots measuring 106.0% and 105.1%. Regarding bladder, clinical plans yielded average bladder neck V100 values of 29.6% and bladder V20.8 Gy values of 12.0cc, whereas DT-based plans showed better sparing of bladder neck with values of 14.0% and 9.5cc. Clinical and DT-based plans resulted in comparable rectum dose statistics due to SpaceOAR. Compared to clinical plans, the proposed DT-based plans improved dosimetry quality, improving plan scores ranging from 2.0 to 15.5.Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions using fast adaptive treatment plan selections and patient-specific setup uncertainty. This research contributes to the ongoing efforts to achieve personalized prostate radiotherapy.
本研究旨在开发一种数字孪生(DT)框架,以实现具有快速治疗计划选择和患者特异性临床靶区(CTV)设置不确定性的自适应质子前列腺立体定向体部放射治疗(SBRT)。前列腺SBRT因其有效性和缩短的治疗时间,已成为外照射放疗的主要选择。然而,分次间的解剖结构变化会影响治疗结果。本研究旨在利用DT概念解决这些不确定性,以提高治疗质量。对两分次的前列腺质子SBRT进行了回顾性研究,从机构数据库(n = 43)中随机选择了10例患者病例。基于DT的治疗计划是利用通过机器学习预测确定的患者特异性CTV设置不确定性制定的。计划使用治疗前CT和校正后的锥束CT(cCBCT)进行优化。对cCBCT进行了CT值和伪影校正,并使用cCBCT进行计划评估,以考虑患者的实际解剖结构。采用ProKnow评分系统确定最佳治疗计划。10例患者的原始临床计划和基于DT的计划的平均CTV D98值分别为99.0%和98.8%,热点分别为106.0%和105.1%。关于膀胱,临床计划产生的膀胱颈V100平均 值为29.6%,膀胱V20.8 Gy值为12.0cc,而基于DT的计划显示膀胱颈的受量更低,分别为14.0%和9.5cc。由于使用了SpaceOAR,临床计划和基于DT的计划导致的直肠剂量统计结果相当。与临床计划相比,所提出的基于DT的计划提高了剂量学质量,计划分数提高了2.0至15.5。我们的研究提出了一种开创性的方法,利用DT技术增强自适应质子SBRT,有可能彻底改变前列腺放疗,通过快速的自适应治疗计划选择和患者特异性设置不确定性提供个性化治疗方案。这项研究为实现个性化前列腺放疗的持续努力做出了贡献。