Suppr超能文献

基于多模态影像的质子治疗物质密度估计的有监督深度学习方法

Multimodal imaging-based material mass density estimation for proton therapy using supervised deep learning.

机构信息

Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States.

Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts, United States.

出版信息

Br J Radiol. 2023 Dec;96(1152):20220907. doi: 10.1259/bjr.20220907. Epub 2023 Oct 3.

Abstract

OBJECTIVE

Mapping CT number to material property dominates the proton range uncertainty. This work aims to develop a physics-constrained deep learning-based multimodal imaging (PDMI) framework to integrate physics, deep learning, MRI, and advanced dual-energy CT (DECT) to derive accurate patient mass density maps.

METHODS

Seven tissue substitute MRI phantoms were used for validation including adipose, brain, muscle, liver, skin, spongiosa, 45% hydroxyapatite (HA) bone. MRI images were acquired using weighted Dixon and weighted short tau inversion recovery sequences. Training inputs are from MRI and twin-beam dual-energy images acquired at 120 kVp with gold/tin filters. The feasibility investigation included an empirical model and four residual networks (ResNet) derived from different training inputs and strategies by PDMI framework. PRN-MR-DE and RN-MR-DE denote ResNet (RN) trained with and without a physics constraint (P) using MRI (MR) and DECT (DE) images. PRN-DE stands for RN trained with a physics constraint using only DE images. A retrospective study using institutional patient data was also conducted to investigate the feasibility of the proposed framework.

RESULTS

For the tissue surrogate study, PRN-MR-DE, PRN-DE, and RN-MR-DE result in mean mass density errors: -0.72%/2.62%/-3.58% for adipose; -0.03%/-0.61%/-0.18% for muscle; -0.58%/-1.36%/-4.86% for 45% HA bone. The retrospective patient study indicated that PRN-MR-DE predicted the densities of soft tissue and bone within expected intervals based on the literature survey, while PRN-DE generated large density deviations.

CONCLUSION

The proposed PDMI framework can generate accurate mass density maps using MRI and DECT images. The supervised learning can further enhance model efficacy, making PRN-MR-DE outperform RN-MR-DE. The patient investigation also shows that the framework can potentially improve proton range uncertainty with accurate patient mass density maps.

ADVANCES IN KNOWLEDGE

PDMI framework is proposed for the first time to inform deep learning models by physics insights and leverage the information from MRI to derive accurate mass density maps.

摘要

目的

将 CT 数映射到材料属性主导质子射程不确定性。本研究旨在开发一种物理约束的基于深度学习的多模态成像(PDMI)框架,以整合物理、深度学习、MRI 和先进的双能 CT(DECT),从而获得准确的患者质量密度图。

方法

使用包括脂肪、脑、肌肉、肝、皮肤、松质骨、45%羟磷灰石(HA)骨在内的七种组织替代物 MRI 体模进行验证。MRI 图像采用加权 Dixon 和加权短 tau 反转恢复序列采集。训练输入来自于在 120kVp 时使用金/锡滤过器采集的 MRI 和双束双能图像。可行性研究包括 PDMI 框架下,来自不同训练输入和策略的经验模型和四个残差网络(ResNet)。PRN-MR-DE 和 RN-MR-DE 分别表示使用 MRI(MR)和 DECT(DE)图像,具有和不具有物理约束(P)的 ResNet(RN)训练。PRN-DE 表示仅使用 DE 图像进行物理约束训练的 RN。还进行了一项使用机构患者数据的回顾性研究,以研究所提出框架的可行性。

结果

对于组织替代物研究,PRN-MR-DE、PRN-DE 和 RN-MR-DE 的平均质量密度误差为:脂肪-0.72%/2.62%/-3.58%;肌肉-0.03%/-0.61%/-0.18%;45%HA 骨-0.58%/-1.36%/-4.86%。回顾性患者研究表明,根据文献调查,PRN-MR-DE 预测软组织和骨的密度在预期范围内,而 PRN-DE 则产生较大的密度偏差。

结论

所提出的 PDMI 框架可以使用 MRI 和 DECT 图像生成准确的质量密度图。有监督学习可以进一步提高模型功效,使 PRN-MR-DE 优于 RN-MR-DE。患者研究还表明,该框架可以通过准确的患者质量密度图,潜在地改善质子射程不确定性。

知识进展

首次提出 PDMI 框架,通过物理洞察力为深度学习模型提供信息,并利用 MRI 中的信息来获得准确的质量密度图。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验