Waz Sebastian, Wang Yalin, Lu Zhong-Lin
Center for Neural Science, New York University, 4 Washington Place, NY, 10003, NY, USA.
School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA.
Neuroimage. 2025 Feb 1;306:120994. doi: 10.1016/j.neuroimage.2024.120994. Epub 2025 Jan 4.
BOLD response can be fitted using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). Fitting the PRF model costs considerable time, often requiring days to analyze BOLD signals for a small cohort of subjects. We introduce the qPRF ("quick PRF"), a system for accelerated PRF modeling that reduced the computation time by a factor >1,000 without losing goodness-of-fit when compared to another widely available PRF modeling package (Kay et al., 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen et al. (2013). The system achieves this level of acceleration by pre-computing a tree-like data structure, which it rapidly searches during the fitting step for an optimal parameter combination. We tested the method on a constrained four-parameter version of the PRF model (Strategy 1 herein) and an unconstrained five-parameter PRF model, which the qPRF fitted at comparable speed (Strategy 2). We show how an additional search step can guarantee optimality of qPRF solutions with little additional time cost (Strategy 3). To assess the quality of qPRF solutions, we compared our Strategy 1 solutions to those provided by Benson et al. (2018) who performed a similar four-parameter fit. Both hemispheres of the 181 subjects in the HCP dataset (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were analyzed by qPRF in 12.82 h on an ordinary CPU. The absolute difference in R achieved by the qPRF compared to Benson et al. (2018) was negligible, with a median of 0.025% (R units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greater R on 70.2% of vertices. We also assess the qPRF method's model-recovery ability using a simulated dataset. The qPRF may facilitate the development and use of more elaborate models based on the PRF framework and may pave the way for novel clinical applications.
通过群体感受野(PRF)模型可以拟合血氧水平依赖(BOLD)反应,以揭示视觉输入在皮层上是如何表征的(杜穆林和万德尔,2008年)。拟合PRF模型需要花费大量时间,通常需要数天时间来分析一小群受试者的BOLD信号。我们引入了qPRF(“快速PRF”),这是一种用于加速PRF建模的系统,与另一个广泛使用的PRF建模软件包相比,它将计算时间缩短了1000倍以上,并且在人类连接组计划(HCP;范·埃森等人,2013年)的数据基准测试中,在不损失拟合优度的情况下(凯等人,2013年)。该系统通过预先计算一种树状数据结构来实现这种加速水平,在拟合步骤中它会快速搜索该数据结构以寻找最优参数组合。我们在PRF模型的受限四参数版本(本文中的策略1)和无约束五参数PRF模型上测试了该方法,qPRF以可比的速度对其进行拟合(策略2)。我们展示了如何通过一个额外的搜索步骤,以很少的额外时间成本保证qPRF解的最优性(策略3)。为了评估qPRF解的质量,我们将我们的策略1解与本森等人(2018年)提供的解进行了比较,他们进行了类似的四参数拟合。在普通CPU上,qPRF在12.82小时内对HCP数据集中181名受试者的两个半球(总共10753572个顶点,每个顶点都有一个1800帧的独特BOLD时间序列)进行了分析。与本森等人(2018年)相比,qPRF实现的R的绝对差异可以忽略不计,中位数为0.025%(R单位在0%到100%之间)。总体而言,qPRF产生了略好的拟合解,在70.2%的顶点上实现了更大的R。我们还使用模拟数据集评估了qPRF方法的模型恢复能力。qPRF可能会促进基于PRF框架的更精细模型的开发和使用,并可能为新的临床应用铺平道路。