Laboratoire de Recherche en Neuroimagerie, DNC, CHUV, Lausanne, Switzerland; Instytut Radioelektroniki i Technik Multimedialnych, WEITI, PW, Warsaw, Poland.
Laboratoire de Recherche en Neuroimagerie, DNC, CHUV, Lausanne, Switzerland.
Neuroimage. 2018 May 15;172:175-193. doi: 10.1016/j.neuroimage.2018.01.047. Epub 2018 Feb 3.
We introduce a new approach to Bayesian pRF model estimation using Markov Chain Monte Carlo (MCMC) sampling for simultaneous estimation of pRF and hemodynamic parameters. To obtain high performance on commonly accessible hardware we present a novel heuristic consisting of interpolation between precomputed responses for predetermined stimuli and a large cross-section of receptive field parameters. We investigate the validity of the proposed approach with respect to MCMC convergence, tuning and biases. We compare different combinations of pRF - Compressive Spatial Summation (CSS), Dumoulin-Wandell (DW) and hemodynamic (5-parameter and 3-parameter Balloon-Windkessel) models within our framework with and without the usage of the new heuristic. We evaluate estimation consistency and log probability across models. We perform as well a comparison of one model with and without lookup table within the RStan framework using its No-U-Turn Sampler. We present accelerated computation of whole-ROI parameters for one subject. Finally, we discuss risks and limitations associated with the usage of the new heuristic as well as the means of resolving them. We found that the new algorithm is a valid sampling approach to joint pRF/hemodynamic parameter estimation and that it exhibits very high performance.
我们介绍了一种新的贝叶斯 pRF 模型估计方法,使用马尔可夫链蒙特卡罗 (MCMC) 抽样同时估计 pRF 和血液动力学参数。为了在通常可访问的硬件上获得高性能,我们提出了一种新的启发式方法,包括对预定刺激的预先计算响应和大范围感受野参数之间的插值。我们研究了所提出的方法在 MCMC 收敛性、调整和偏差方面的有效性。我们在没有和有使用新启发式方法的情况下,在我们的框架内比较了不同的 pRF - 压缩空间总和 (CSS)、Dumoulin-Wandell (DW) 和血液动力学 (5-参数和 3-参数气球-风箱) 模型的组合。我们评估了跨模型的估计一致性和对数概率。我们还在没有使用查找表的情况下在 RStan 框架内使用其 No-U-Turn Sampler 比较了一个模型。我们展示了对一个受试者的整个 ROI 参数的加速计算。最后,我们讨论了与使用新启发式相关的风险和限制以及解决这些问题的方法。我们发现,新算法是一种有效的联合 pRF/血液动力学参数估计的抽样方法,并且表现出非常高的性能。