Nur-E-Alam Mohammad, Abedin Tarek, Samsudin Nur Aini, Petrů Jana, Barnawi Abdulwasa Bakr, Soudagar Manzoore Elahi M, Khan T M Yunus, Bashir Muhammad Nasir, Islam Mohammad Aminul, Yap Boon Kar, Kiong Tiong Sieh
Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, 43000, Selangor, Malaysia.
School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
Sci Rep. 2025 Jan 6;15(1):995. doi: 10.1038/s41598-024-82360-4.
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations. The microgrid consists of PV, battery, grid, and load. A Maximum Power Point Tracking (MPPT) controller helps to extract the maximum PV output and manages the power storage by providing or absorbing excess power. System analysis is performed by observing the State of Charge (SoC)of the battery and output power for each source. The grid supplies additional power if the battery and PV fail to meet the load demand. Total Harmonic Distortion (THD) analysis compares the performance of the Proportional-Integral Controller (PIC) and FLC. The results show that the PI controller design reduces the THD in the current signal, while FLC does not reduce the THD of the grid current when used in the EMS. However, FLC offers better control over the battery's SOC, effectively preventing overcharging and over-discharging. While PI reduces THD, FLC provides superior SOC control in a system comprising PV, battery, grid, and load. The findings demonstrate that the output current is zero when the SOC is higher than 80% or lower than 20%, signifying that no charging or discharging takes place to avoid overcharging and over-discharging. The third goal was accomplished by comparing and confirming that the grid current's THD for the EMS designed with both the PI Controller and the FLC is maintained below 5%, following the IEEE 519 harmonic standard, using the THD block in MATLAB Simulink. This analysis highlights FLC's potential to address demand-supply mismatches and renewable energy variability, which is crucial for optimizing microgrid performance.
由于双向的电力和信息流,微电网(MG)面临着重大的安全问题。本研究通过集成能源管理系统(EMS)来平衡马来西亚微电网中的能源供需,设计了一种考虑间歇性可再生能源和波动需求模式的模糊逻辑控制器(FLC)。FLC为能源调度提供了一种灵活的解决方案,并通过MATLAB/Simulink仿真进行了有效评估。微电网由光伏、电池、电网和负载组成。最大功率点跟踪(MPPT)控制器有助于提取光伏的最大输出功率,并通过提供或吸收多余功率来管理能量存储。通过观察电池的荷电状态(SoC)和每个电源的输出功率来进行系统分析。如果电池和光伏无法满足负载需求,电网将提供额外的电力。总谐波失真(THD)分析比较了比例积分控制器(PIC)和FLC的性能。结果表明,PI控制器设计降低了电流信号中的THD,而在EMS中使用时,FLC并未降低电网电流的THD。然而,FLC对电池的SoC具有更好的控制能力,有效防止了过充电和过放电。虽然PI降低了THD,但在包含光伏、电池、电网和负载的系统中,FLC提供了更好的SoC控制。研究结果表明,当SoC高于80%或低于20%时,输出电流为零,这意味着不进行充电或放电以避免过充电和过放电。第三个目标是通过使用MATLAB Simulink中的THD模块进行比较并确认,按照IEEE 519谐波标准,采用PI控制器和FLC设计的EMS的电网电流THD均保持在5%以下。该分析突出了FLC在解决供需不匹配和可再生能源波动性方面的潜力,这对于优化微电网性能至关重要。