Suppr超能文献

基于人工智能的直流微电网中可再生能源与储能系统的非线性控制

Artificial intelligence-based nonlinear control of renewable energies and storage system in a DC microgrid.

作者信息

Zehra Syeda Shafia, Rahman Aqeel Ur, Armghan Hammad, Ahmad Iftikhar, Ammara Umme

机构信息

School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan.

School of Electrical Engineering, Shandong University, Jinan, China.

出版信息

ISA Trans. 2022 Feb;121:217-231. doi: 10.1016/j.isatra.2021.04.004. Epub 2021 Apr 16.

Abstract

To minimize the global warming and the impact of greenhouse effect, renewable energy sources-based microgrids are widely studied. In this paper, the control of PV, wind-based renewable energy system and battery, supercapacitor-based energy storage system in a DC microgrid have been presented. Maximum power points for PV and wind have been obtained using neural network and optimal torque control, respectively. Nonlinear supertwisting sliding mode controller has been presented for the power sources. Global asymptotic stability of the framework has been verified using Lyapunov stability analysis. For load-generation balance, energy management system based on fuzzy logic has been devised and the controllers have been simulated using MATLAB/Simulink® (2019a) along with a comparison of different controllers. For the experimental validation, controller hardware-in-the loop experiment has been carried out which validates the performance of the designed system.

摘要

为了将全球变暖和温室效应的影响降至最低,基于可再生能源的微电网得到了广泛研究。本文介绍了直流微电网中基于光伏、风能的可再生能源系统以及电池、超级电容器储能系统的控制方法。分别使用神经网络和最优转矩控制获得了光伏和风能的最大功率点。针对电源提出了非线性超扭曲滑模控制器。利用李雅普诺夫稳定性分析验证了该框架的全局渐近稳定性。为实现负荷与发电平衡,设计了基于模糊逻辑的能量管理系统,并使用MATLAB/Simulink®(2019a)对控制器进行了仿真,同时对不同控制器进行了比较。为进行实验验证,开展了控制器硬件在环实验,验证了所设计系统的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验