Yiming Burebi, Hubert Simon, Cartier Alex, Bresson Bruno, Mello Gabriel, Ringuede Armelle, Creton Costantino
Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
Nat Commun. 2025 Jan 6;16(1):431. doi: 10.1038/s41467-024-55472-8.
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer. The ICEs with the MNE architecture exhibit a room temperature ionic conductivity of the order of and stress at break of ~8 MPa, whereas the simple networks without an MNE architecture show two orders magnitude lower ionic conductivity ( ) and comparably low strength (<1.5 MPa) at 25 °C than their MNE architecture based counterparts. The MNE architecture with a low monomer combines the stiffness and fracture toughness given by sacrificial bond breakage while improving ionic conductivity through increased segmental mobility.
具有高强度、韧性和良好离子导电性的可拉伸弹性材料对于可穿戴设备和可拉伸电池来说是非常理想的。不幸的是,据报道,要同时实现所有这些性能的成功案例有限。在这里,我们报告了一类离子导电弹性体(ICEs),通过将多重网络弹性体(MNE)结构引入低聚物中,在机械性能(高刚度、可逆弹性、抗断裂性)和离子导电性之间没有折衷。具有MNE结构的ICEs在室温下的离子电导率约为 ,断裂应力约为8兆帕,而没有MNE结构的简单网络在25℃时的离子电导率比基于MNE结构的对应物低两个数量级( ),强度也相对较低(<1.5兆帕)。具有低 单体的MNE结构结合了牺牲键断裂赋予的刚度和断裂韧性,同时通过增加链段迁移率提高了离子导电性。