Murray David, Stankovic Lina, Stankovic Vladimir, Pytharouli Stella, White Adrian, Dashwood Ben, Chambers Jonathan
University of Strathclyde, Glasgow, G1 1XR, UK.
British Geological Survey, London, UK.
Sci Rep. 2025 Jan 6;15(1):1026. doi: 10.1038/s41598-024-84067-y.
This study demonstrates that machine learning from seismograms, obtained from commonly deployed seismometers, can identify the early stages of slope failure in the field. Landslide hazards negatively impact the economy and public through disruption, damage of infrastructure and even loss of life. Triggering factors leading to landslides are broadly understood, typically associated with rainfall, geological conditions and steep topography. However, early warning at slope scale of an imminent landslide is more challenging. Through semi-supervised learning for seismic event detection from continuous seismic recordings over a period of about 10 years, we demonstrate that timely landslide induced displacement prediction is possible, providing the basis for landslide early warning systems. Our proposed methodology detects and characterises seismic precursors to landslide events making use of seismic recordings near an active slow moving earth slide-flow using a semi-supervised Siamese network. This data driven methodology identifies increase in microseismicity, and the change in the frequency spectrum of that microseismicity which identify key stages prior to a failure: 'rest', 'precursor' and 'active'. Due to the semi-supervised nature of Siamese networks, the methodology is adaptable to discovering new types of distinct events, making it an ideal solution for precursor detection at new sites.
本研究表明,从常用地震仪获取的地震图进行机器学习,能够识别野外边坡失稳的早期阶段。滑坡灾害会通过干扰、破坏基础设施甚至造成人员伤亡,对经济和公众产生负面影响。导致滑坡的触发因素已广为人知,通常与降雨、地质条件和陡峭地形有关。然而,在边坡尺度上对即将发生的滑坡进行早期预警则更具挑战性。通过对约10年期间的连续地震记录进行地震事件检测的半监督学习,我们证明了及时进行滑坡引起的位移预测是可行的,为滑坡预警系统提供了基础。我们提出的方法利用半监督暹罗网络,通过对活跃的缓慢移动的土滑坡-泥石流附近的地震记录进行分析,来检测和表征滑坡事件的地震前兆。这种数据驱动的方法能够识别微震活动的增加以及该微震活动频谱的变化,这些变化可确定破坏前的关键阶段:“静止”、“前兆”和“活跃”。由于暹罗网络的半监督性质,该方法适用于发现新型的不同事件,使其成为新地点前兆检测的理想解决方案。