文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测乳腺癌患者他莫昔芬治疗后子宫内膜病变的机器学习列线图。

Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients.

作者信息

Shaoshan Cao, Niannian Chen, Ying Ma

机构信息

Department of Obstetrics and Gynecology, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, 621000, Sichuan, China.

School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621000, China.

出版信息

Sci Rep. 2025 Jan 6;15(1):981. doi: 10.1038/s41598-024-82373-z.


DOI:10.1038/s41598-024-82373-z
PMID:39762305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11704003/
Abstract

Objective Endometrial lesions are a frequent complication following breast cancer, and current diagnostic tools have limitations. This study aims to develop a machine learning-based nomogram model for predicting the early detection of endometrial lesions in patients. The model is designed to assess risk and facilitate individualized treatment strategies for premenopausal breast cancer patients. Method A retrospective study was conducted on 224 patients who underwent diagnostic curettage post-tamoxifen (TAM) therapy between November 2012 and November 2023. These patients exhibited signs of endometrial abnormalities or symptoms such as colporrhagia. Clinical data were collected and analyzed using R software (version 4.3.2) to identify factors influencing the occurrence of endometrial lesions and evaluate their predictive values. Three machine learning methods were employed to develop a risk prediction model, and their performances were compared. The best-performing model was selected to construct a nomogram of endometrial lesions. Internal validation was conducted using the bootstrap method, and the model's accuracy and fit were assessed using the concordance index (C-index) and calibration curves. Results Independent risk factors for endometrial lesions included ultrasound characteristics, duration of TAM therapy, presence of colporrhagia, and endometrial thickness (P < 0.05). Among the machine learning methods compared, the LASSO regression integrated with a multifactorial logistic regression model demonstrated strong performance, with a concordance index (C-index) of 0.874 and effective calibration (mean absolute error of conformity: 0.014). This model achieved an accuracy of 0.853 and a precision of 0.917, with a training set AUC of 0.874 (95% CI: 0.794-0.831) and a test set AUC of 0.891 (95% CI: 0.777-1.000), closely aligning the predicted risk with the actual observed risk. Conclusion The developed prediction model is effective in evaluating endometrial lesions in premenopausal breast cancer patients. This model offers a theoretical foundation for improving clinical predictions and devising tailored treatment strategies for this patient group.

摘要

目的 子宫内膜病变是乳腺癌后的常见并发症,当前的诊断工具存在局限性。本研究旨在开发一种基于机器学习的列线图模型,用于预测患者子宫内膜病变的早期检测。该模型旨在评估风险,并为绝经前乳腺癌患者制定个体化治疗策略。方法 对2012年11月至2023年11月间接受他莫昔芬(TAM)治疗后诊断性刮宫的224例患者进行回顾性研究。这些患者表现出子宫内膜异常迹象或诸如阴道出血等症状。收集临床数据并使用R软件(版本4.3.2)进行分析,以确定影响子宫内膜病变发生的因素并评估其预测价值。采用三种机器学习方法开发风险预测模型,并比较它们的性能。选择性能最佳的模型构建子宫内膜病变列线图。使用自助法进行内部验证,并使用一致性指数(C指数)和校准曲线评估模型的准确性和拟合度。结果 子宫内膜病变的独立危险因素包括超声特征、TAM治疗持续时间、阴道出血情况和子宫内膜厚度(P < 0.05)。在比较的机器学习方法中,与多因素逻辑回归模型相结合的LASSO回归表现出色,一致性指数(C指数)为0.8

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/f3e37f2fa0af/41598_2024_82373_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/b538f237abd6/41598_2024_82373_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/23c898027d72/41598_2024_82373_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/ba5b58739a92/41598_2024_82373_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/1442bd890d63/41598_2024_82373_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/1ea8d70b183f/41598_2024_82373_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/41f9e93c117c/41598_2024_82373_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/29eb2f7bc085/41598_2024_82373_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/35da6423be02/41598_2024_82373_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/f3e37f2fa0af/41598_2024_82373_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/b538f237abd6/41598_2024_82373_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/23c898027d72/41598_2024_82373_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/ba5b58739a92/41598_2024_82373_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/1442bd890d63/41598_2024_82373_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/1ea8d70b183f/41598_2024_82373_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/41f9e93c117c/41598_2024_82373_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/29eb2f7bc085/41598_2024_82373_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/35da6423be02/41598_2024_82373_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d387/11704003/f3e37f2fa0af/41598_2024_82373_Fig9_HTML.jpg

相似文献

[1]
Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients.

Sci Rep. 2025-1-6

[2]
Risk Factors Associated with Endometrial Pathology in Premenopausal Breast Cancer Patients Treated with Tamoxifen.

Yonsei Med J. 2020-4

[3]
Elastosonographic evaluation of endometrium in women using tamoxifen for breast cancer.

Niger J Clin Pract. 2019-1

[4]
Prospective longitudinal study of ultrasound screening for endometrial abnormalities in women with breast cancer receiving tamoxifen.

Gynecol Oncol. 2003-10

[5]
Comparison of endometrial changes among symptomatic tamoxifen-treated and nontreated premenopausal and postmenopausal breast cancer patients.

Gynecol Oncol. 1997-8

[6]
The endometrium in asymptomatic breast cancer patients on tamoxifen: value of transvaginal ultrasonography with saline infusion and Doppler flow.

Gynecol Oncol. 2004-5

[7]
Indication of hysteroscopy in tamoxifen treated breast cancer patients.

J Exp Clin Cancer Res. 2002-3

[8]
Abnormalities detected on transvaginal ultrasonography in tamoxifen-treated postmenopausal breast cancer patients may represent endometrial cystic atrophy.

Am J Obstet Gynecol. 1998-6

[9]
Utilization of gynecologic services in women with breast cancer receiving hormonal therapy.

Am J Obstet Gynecol. 2017-7

[10]
Significance of endovaginal ultrasonography in assessing tamoxifen-associated changes of the endometrium. A prospective study.

Acta Obstet Gynecol Scand. 2000-8

本文引用的文献

[1]
Prognostic Value of Neutrophil-to-Eosinophil Ratio (NER) in Cancer: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2024-10-31

[2]
Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.

Cancers (Basel). 2024-5-11

[3]
Associations between "Cancer Risk", "Inflammation" and "Metabolic Syndrome": A Scoping Review.

Biology (Basel). 2024-5-16

[4]
Sacituzumab Govitecan for the treatment of advanced triple negative breast cancer patients: a multi-center real-world analysis.

Front Oncol. 2024-3-26

[5]
Datopotamab deruxtecan: A novel antibody drug conjugate for triple-negative breast cancer.

Heliyon. 2024-3-22

[6]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[7]
Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data.

Support Care Cancer. 2023-10-11

[8]
Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer.

CA Cancer J Clin. 2023

[9]
Tamoxifen use and risk of endometrial cancer in breast cancer patients: A systematic review and dose-response meta-analysis.

Cancer Rep (Hoboken). 2023-4

[10]
Adherence to Adjuvant Endocrine Therapy and Survival Among Older Women with Early-Stage Hormone Receptor-Positive Breast Cancer.

Clin Drug Investig. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索