Suppr超能文献

大数据技术在企业信息安全管理中的应用。

Application of big data technology in enterprise information security management.

作者信息

Li Ping, Zhang Limin

机构信息

School of Information and Mechatronic Engineering, Hunan International Economics University, Changsha, 410205, China.

College of Electrical and Information Engineering, Hunan Institute of Traffic Engineering, Hunan, Hengyang, 421001, China.

出版信息

Sci Rep. 2025 Jan 6;15(1):1022. doi: 10.1038/s41598-025-85403-6.

Abstract

This study aims to explore the application value of big data technology (BDT) in enterprise information security (EIS). Its goal is to develop a risk prediction model based on big data analysis to enhance the information security protection capability of enterprises. A big data analysis system that can monitor and intelligently identify potential security risks in real-time is constructed by designing complex network analysis algorithms and machine learning models. For different types of security threats, the system uses feature engineering and model training processes to extract key risk indicators and optimize model prediction performance. The experimental results show that the constructed risk prediction model has excellent performance on the test set, and its Area Under the Curve reaches 0.95, indicating that the model has good differentiation ability and high prediction accuracy. In addition, in the multi-class risk identification task, the model achieves an average precision of 0.87. Compared with the traditional method, it has remarkably improved the early warning accuracy and response speed of enterprises to various information security incidents. Therefore, this study confirms the effectiveness and feasibility of applying BDT to EIS risk management, and the successfully constructed prediction model provides strong technical support for EIS protection.

摘要

本研究旨在探索大数据技术(BDT)在企业信息安全(EIS)中的应用价值。其目标是基于大数据分析开发一种风险预测模型,以增强企业的信息安全保护能力。通过设计复杂网络分析算法和机器学习模型,构建了一个能够实时监测和智能识别潜在安全风险的大数据分析系统。针对不同类型的安全威胁,该系统利用特征工程和模型训练过程来提取关键风险指标,并优化模型预测性能。实验结果表明,构建的风险预测模型在测试集上具有优异的性能,其曲线下面积达到0.95,表明该模型具有良好的区分能力和较高的预测准确性。此外,在多类风险识别任务中,该模型的平均精度达到0.87。与传统方法相比,它显著提高了企业对各类信息安全事件的预警准确性和响应速度。因此,本研究证实了将BDT应用于EIS风险管理的有效性和可行性,成功构建的预测模型为EIS保护提供了强有力的技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/975c/11704198/2dc55ba311f4/41598_2025_85403_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验