Suppr超能文献

鲁棒有界单类支持向量分类的C参数版本

C-parameter version of robust bounded one-class support vector classification.

作者信息

Ye Junyou, Yang Zhixia, Hu Yongxing, Zhang Zheng

机构信息

College of Mathematics and Systems Science, Xinjiang University, Urumqi , 830046, China.

Institute of Mathematics and Physics, Xinjiang University, Urumqi , 830046, China.

出版信息

Sci Rep. 2025 Jan 6;15(1):975. doi: 10.1038/s41598-025-85151-7.

Abstract

ν-one-class support vector classification (ν-OCSVC) has garnered significant attention for its remarkable performance in handling single-class classification and anomaly detection. Nonetheless, the model does not yield a unique decision boundary, and potentially compromises learning performance when the training data is contaminated by some outliers or mislabeled observations. This paper presents a novel C-parameter version of bounded one-class support vector classification (C-BOCSVC) to determine a unique decision boundary. The distance from the origin to decision boundary is the geometrical margin in the space [Formula: see text] (higher 1-dimension than feature space), and its maximization corresponds to the structural risk minimization (SRM) principle inscribed by an [Formula: see text]-norm regularization term both on the normal direction and bias of the decision boundary. To enhance the anti-noise and anti-outlier abilities of C-BOCSVC, the alternative robust version (C-RBOCSVC) is also developed, which incorporates the k-nearest neighbor relative density to assign varying weights to observations and mitigate the negative impact of outliers on the optimal decision boundary. The theoretical properties of the proposed method are successively derived, including the relationship between the solutions to the primal and dual problems, the connections between our C-BOCSVC and ν-OCSVC and the computational complexity. Experimental results over massive datasets demonstrate the feasibility and reliability of our C-BOCSVC, and highlight the superior performance of C-RBOCSVC compared to other state-of-the-art one-class classifiers when data is contaminated. The demo code of this work is publicly available at https://github.com/Zhangmath1122/C-RBOCSVC .

摘要

ν-单类支持向量分类(ν-OCSVC)因其在处理单类分类和异常检测方面的卓越性能而备受关注。然而,该模型不会产生唯一的决策边界,并且当训练数据被一些异常值或错误标记的观测值污染时,可能会损害学习性能。本文提出了一种有界单类支持向量分类的新型C参数版本(C-BOCSVC)来确定唯一的决策边界。从原点到决策边界的距离是空间[公式:见原文](比特征空间高1维)中的几何间隔,其最大化对应于由决策边界的法线方向和偏差上的[公式:见原文]范数正则化项所规定的结构风险最小化(SRM)原则。为了增强C-BOCSVC的抗噪声和抗异常值能力,还开发了替代的鲁棒版本(C-RBOCSVC),它结合了k近邻相对密度为观测值分配不同的权重,并减轻异常值对最优决策边界的负面影响。相继推导了所提出方法的理论性质,包括原始问题和对偶问题解之间的关系、我们的C-BOCSVC与ν-OCSVC之间的联系以及计算复杂度。在大量数据集上的实验结果证明了我们的C-BOCSVC的可行性和可靠性,并突出了在数据被污染时C-RBOCSVC相对于其他现有单类分类器的优越性能。这项工作的演示代码可在https://github.com/Zhangmath1122/C-RBOCSVC上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9921/11704136/94832937749b/41598_2025_85151_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验