Suppr超能文献

估计高维分布的支撑集。

Estimating the support of a high-dimensional distribution.

作者信息

Schölkopf B, Platt J C, Shawe-Taylor J, Smola A J, Williamson R C

机构信息

Microsoft Research Ltd, Cambridge CB2 3NH, U.K.

出版信息

Neural Comput. 2001 Jul;13(7):1443-71. doi: 10.1162/089976601750264965.

Abstract

Suppose you are given some data set drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified value between 0 and 1. We propose a method to approach this problem by trying to estimate a function f that is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabeled data.

摘要

假设你有一些从潜在概率分布P中抽取的数据集,并且你想要估计输入空间的一个“简单”子集S,使得从P中抽取的测试点落在S之外的概率等于0到1之间某个预先指定的值。我们提出一种方法来解决这个问题,即尝试估计一个函数f,它在S上为正,在其补集上为负。f的函数形式由基于训练数据的一个潜在小子集的核展开给出;通过控制相关特征空间中权重向量的长度来对其进行正则化。通过求解一个二次规划问题来找到展开系数,我们通过对输入模式对进行顺序优化来做到这一点。我们还对我们算法的统计性能进行了理论分析。该算法是支持向量算法到无标签数据情况的自然扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验