Chen Ziyan, Yi Sanli
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China.
Key Laboratory of Computer Technology Application of Yunnan Province, Kunming, Yunnan, China.
J Imaging Inform Med. 2025 Jan 6. doi: 10.1007/s10278-024-01361-x.
The automated diagnosis of low-resolution and difficult-to-recognize breast ultrasound images through multi-modal fusion holds significant clinical value. However, prevailing fusion methods predominantly rely on image modalities, neglecting the textual pathology information, and only benign and malignant diagnosis of breast tumors is not satisfying for clinical applications. Consequently, this paper proposes a novel multi-modal fusion interactive diagnostic framework, termed the MIC framework, to achieve the multi-label classification of breast cancer, namely benign-malignant classification and breast imaging reporting and data system (BI-RADS) 3, 4a, 4b, 4c, and 5 gradings. The framework fusions brightness-mode ultrasound images, contrast-enhanced ultrasound images, and pathological information. Firstly, the two image modalities through the multi-modal similarity module capture inter-modal high similarity features. Secondly, the interactive feature enhancement module extracts abundant global-local and multi-scale complementary information from the images. Thirdly, pathological information is fused through the cross-modal interaction module to achieve the combination of image data and pathology knowledge. Finally, parallel classifier and joint loss function are used to realize and optimize the multi-label classification. Experimental results show that the proposed framework achieves accuracy, precision, recall, and F1 of 98.45%, 98.25%, 98.06%, and 98.43%, respectively, demonstrating it can recognize breast cancers effectively.
通过多模态融合实现低分辨率且难以识别的乳腺超声图像的自动诊断具有重要的临床价值。然而,现有的融合方法主要依赖于图像模态,忽略了文本病理信息,并且仅对乳腺肿瘤进行良恶性诊断在临床应用中并不令人满意。因此,本文提出了一种新颖的多模态融合交互式诊断框架,称为MIC框架,以实现乳腺癌的多标签分类,即良恶性分类以及乳腺影像报告和数据系统(BI-RADS)3、4a、4b、4c和5级分类。该框架融合了亮度模式超声图像、超声造影图像和病理信息。首先,通过多模态相似性模块对两种图像模态提取模态间的高相似性特征。其次,交互式特征增强模块从图像中提取丰富的全局-局部和多尺度互补信息。第三,通过跨模态交互模块融合病理信息,实现图像数据与病理知识的结合。最后,使用并行分类器和联合损失函数来实现并优化多标签分类。实验结果表明,所提出的框架分别实现了98.45%、98.25%、98.06%和98.43%的准确率、精确率、召回率和F1值,表明它能够有效地识别乳腺癌。