College of Artificial Intelligence, Nankai University, Tianjin, China.
College of Artificial Intelligence, Nankai University, Tianjin, China.
Comput Methods Programs Biomed. 2022 Oct;225:107086. doi: 10.1016/j.cmpb.2022.107086. Epub 2022 Aug 24.
Breast lesions segmentation is an important step of computer-aided diagnosis system. However, speckle noise, heterogeneous structure, and similar intensity distributions bring challenges for breast lesion segmentation.
In this paper, we presented a novel cascaded convolutional neural network integrating U-net, bidirectional attention guidance network (BAGNet) and refinement residual network (RFNet) for the lesion segmentation in breast ultrasound images. Specifically, we first use U-net to generate a set of saliency maps containing low-level and high-level image structures. Then, the bidirectional attention guidance network is used to capture the context between global (low-level) and local (high-level) features from the saliency map. The introduction of the global feature map can reduce the interference of surrounding tissue on the lesion regions. Furthermore, we developed a refinement residual network based on the core architecture of U-net to learn the difference between rough saliency feature maps and ground-truth masks. The learning of residuals can assist us to obtain a more complete lesion mask.
To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation methods on the public breast ultrasound dataset (BUSIS) using six commonly used evaluation metrics. Our method achieves the highest scores on six metrics. Furthermore, p-values indicate significant differences between our method and the comparative methods.
Experimental results show that our method achieves the most competitive segmentation results. In addition, we apply the network on renal ultrasound images segmentation. In general, our method has good adaptability and robustness on ultrasound image segmentation.
乳腺病变分割是计算机辅助诊断系统的重要步骤。然而,斑点噪声、异质结构和相似的强度分布给乳腺病变分割带来了挑战。
本文提出了一种新的级联卷积神经网络,该网络集成了 U-Net、双向注意引导网络(BAGNet)和细化残差网络(RFNet),用于乳腺超声图像中的病变分割。具体来说,我们首先使用 U-Net 生成一组包含低水平和高水平图像结构的显著图。然后,双向注意引导网络用于从显著图中捕获全局(低水平)和局部(高水平)特征之间的上下文。引入全局特征图可以减少周围组织对病变区域的干扰。此外,我们基于 U-Net 的核心架构开发了一个细化残差网络,用于学习粗糙显著特征图和地面真实掩模之间的差异。残差的学习可以帮助我们获得更完整的病变掩模。
为了评估网络的分割性能,我们在公共乳腺超声数据集(BUSIS)上使用六种常用的评估指标与几种最先进的分割方法进行了比较。我们的方法在六个指标上都取得了最高的分数。此外,p 值表明我们的方法与比较方法之间存在显著差异。
实验结果表明,我们的方法取得了最具竞争力的分割结果。此外,我们将该网络应用于肾超声图像分割。总的来说,我们的方法在超声图像分割中具有良好的适应性和鲁棒性。