Suppr超能文献

基于机器学习联合第二、三磨牙优化中国南方人群年龄估计模型效能的可行性研究

Feasibility Study on Optimising the Efficacy of a Population Age Estimation Model for South China by Combined Machine Learning for the Second and Third Molars.

作者信息

Zeng Zihong, Cheng Xuelian, Feng Chiyuan, Shan Weijie, Xu Zixiong, Xie Mingyu, Tang Guo, Zhang Yan, Yue Xia

机构信息

Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.

Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

出版信息

J Imaging Inform Med. 2025 Jan 6. doi: 10.1007/s10278-024-01382-6.

Abstract

Dental age estimation, as an important part of forensic anthropology, has a wide range of applications for its results in legal practice. Given the lowered legal age for criminal responsibility in China and the increasing juvenile delinquency, we establish a morphological database targeting the second (M2) and third molars (M3) of the Southern Chinese population. Full mouth orthopantomography from 1486 individuals aged 8.00 to 24.99 years were collected and categorized into five age groups, comprising four age nodes: 12, 14, 16 and 18 years. The Demirjian method assesses M2 and M3 development, and stepwise regression analysis confirms M2's suitability for age estimation. Advanced ML algorithms, such as Random Forest (RF) and Support Vector Machine, are implemented to fit a classification model, evaluated by accuracy. Ultimately, we constructed age estimation models employing techniques such as Decision Trees, AdaBoost, and Voting methods, and assessed their performance using metrics like the mean absolute error (MAE). Among the age estimation models based on different age groups, the Voting model exhibited the most optimal performance, with an average MAE of 0.7207. The estimation model for the 12-14 age group has the highest accuracy, with an average MAE of 0.5081. The RF model has the highest accuracy in the age estimation model for the 12-14 age group, with an MAE of 0.4248. This study effectively integrates multiple ML algorithms to enhance the precision of dental age estimation using M2 and M3, providing a robust method and predictive scheme for forensic practices in ascertaining the age of criminal responsibility.

摘要

牙龄估计作为法医人类学的重要组成部分,其结果在法律实践中有着广泛的应用。鉴于我国刑事责任年龄的降低以及青少年犯罪率的上升,我们针对中国南方人群的第二磨牙(M2)和第三磨牙(M3)建立了一个形态学数据库。收集了1486名年龄在8.00至24.99岁之间个体的全口曲面断层片,并将其分为五个年龄组,包括四个年龄节点:12岁、14岁、16岁和18岁。Demirjian方法评估M2和M3的发育情况,逐步回归分析证实M2适用于年龄估计。采用随机森林(RF)和支持向量机等先进的机器学习算法来拟合分类模型,并通过准确率进行评估。最终,我们运用决策树、AdaBoost和投票方法等技术构建了年龄估计模型,并使用平均绝对误差(MAE)等指标评估其性能。在基于不同年龄组的年龄估计模型中,投票模型表现出最优性能,平均MAE为0.7207。12 - 14岁年龄组的估计模型准确率最高,平均MAE为0.5081。RF模型在12 - 14岁年龄组的年龄估计模型中准确率最高,MAE为0.4248。本研究有效地整合了多种机器学习算法,以提高利用M2和M3进行牙龄估计的精度,为法医实践中确定刑事责任年龄提供了一种可靠的方法和预测方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验