Suppr超能文献

变革精准医学:临床人工智能单细胞框架的潜力

Transforming precision medicine: The potential of the clinical artificial intelligent single-cell framework.

作者信息

Baumgartner Christian, Brislinger Dagmar

机构信息

Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Graz, Austria.

Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.

出版信息

Clin Transl Med. 2025 Jan;15(1):e70096. doi: 10.1002/ctm2.70096.

Abstract

The editorial, "Clinical and translational mode of single-cell measurements: An artificial intelligent single-cell," introduces the innovative clinical artificial intelligence single-cell (caiSC) system, which merges AI with single-cell informatics to advance real-time diagnostics, disease monitoring, and treatment prediction. By combining clinical data and multimodal molecular inputs, caiSC facilitates personalized medicine, promising enhanced diagnostic precision and tailored therapeutic approaches. Despite its potential, caiSC lacks comprehensive data coverage across cell types and diseases, presenting challenges in data quality and model robustness. The article explores development strategies such as data expansion, machine learning advancements, and interpretability improvements. Future applications of caiSC could include digital cell twins, offering in-depth simulations of cellular behavior to support drug discovery and personalized treatments. Regulatory considerations are discussed, underscoring the need for SaMD/AIaMD certifications for clinical use. Ultimately, with further refinement, caiSC could transform clinical decision-making, driving personalized, precision medicine, and improved patient outcomes. KEY POINTS: Integration of AI with Single-Cell Informatics for Precision Medicine: The caiSC system combines artificial intelligence and single-cell data to improve diagnostics, treatment predictions, and personalized medical decision-making. Challenges in Data Coverage and Model Robustness: caiSC currently faces limitations due to incomplete data across cell types, diseases, and organs, as well as challenges in data quality and high computational demands, which affect model accuracy and clinical applicability. Future Potential and Regulatory Needs: The caiSC framework's development could lead to innovations such as digital cell twins, enabling personalized simulations of cellular responses for better treatment planning, though regulatory certification is essential for safe clinical use.

摘要

社论《单细胞测量的临床与转化模式:人工智能单细胞》介绍了创新的临床人工智能单细胞(caiSC)系统,该系统将人工智能与单细胞信息学相结合,以推进实时诊断、疾病监测和治疗预测。通过整合临床数据和多模态分子输入,caiSC推动了个性化医疗,有望提高诊断精度并实现量身定制的治疗方法。尽管具有潜力,但caiSC在跨细胞类型和疾病的数据覆盖方面缺乏全面性,在数据质量和模型稳健性方面存在挑战。本文探讨了数据扩展、机器学习进步和可解释性改进等发展策略。caiSC的未来应用可能包括数字细胞模型,为支持药物发现和个性化治疗提供细胞行为的深度模拟。文中讨论了监管方面的考虑因素,强调了临床使用需获得软件即医疗设备/人工智能辅助医疗设备认证的必要性。最终,经过进一步完善,caiSC可能会改变临床决策,推动个性化、精准医疗并改善患者预后。要点:人工智能与单细胞信息学整合以实现精准医疗:caiSC系统将人工智能与单细胞数据相结合,以改善诊断、治疗预测和个性化医疗决策。数据覆盖和模型稳健性方面的挑战:由于跨细胞类型、疾病和器官的数据不完整,以及数据质量和高计算需求方面的挑战,caiSC目前面临局限性,这影响了模型准确性和临床适用性。未来潜力和监管需求:caiSC框架的发展可能会带来数字细胞模型等创新,实现细胞反应的个性化模拟以更好地进行治疗规划,不过监管认证对于安全临床使用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12db/11705532/b8a03e19a949/CTM2-15-e70096-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验