Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
Ageing Res Rev. 2024 Nov;101:102497. doi: 10.1016/j.arr.2024.102497. Epub 2024 Sep 16.
Alzheimer's disease (AD) presents a significant challenge in neurodegenerative research and clinical practice due to its complex etiology and progressive nature. The integration of artificial intelligence (AI) into the diagnosis, treatment, and prognostic modelling of AD holds promising potential to transform the landscape of dementia care. This review explores recent advancements in AI applications across various stages of AD management. In early diagnosis, AI-enhanced neuroimaging techniques, including MRI, PET, and CT scans, enable precise detection of AD biomarkers. Machine learning models analyze these images to identify patterns indicative of early cognitive decline. Additionally, AI algorithms are employed to detect genetic and proteomic biomarkers, facilitating early intervention. Cognitive and behavioral assessments have also benefited from AI, with tools that enhance the accuracy of neuropsychological tests and analyze speech and language patterns for early signs of dementia. Personalized treatment strategies have been revolutionized by AI-driven approaches. In drug discovery, virtual screening and drug repurposing, guided by predictive modelling, accelerate the identification of effective treatments. AI also aids in tailoring therapeutic interventions by predicting individual responses to treatments and monitoring patient progress, allowing for dynamic adjustment of care plans. Prognostic modelling, another critical area, utilizes AI to predict disease progression through longitudinal data analysis and risk prediction models. The integration of multi-modal data, combining clinical, genetic, and imaging information, enhances the accuracy of these predictions. Deep learning techniques are particularly effective in fusing diverse data types to uncover new insights into disease mechanisms and progression. Despite these advancements, challenges remain, including ethical considerations, data privacy, and the need for seamless integration of AI tools into clinical workflows. This review underscores the transformative potential of AI in AD management while highlighting areas for future research and development. By leveraging AI, the healthcare community can improve early diagnosis, personalize treatments, and predict disease outcomes more accurately, ultimately enhancing the quality of life for individuals with AD.
阿尔茨海默病(AD)因其复杂的病因和进行性特征,给神经退行性疾病的研究和临床实践带来了重大挑战。将人工智能(AI)融入 AD 的诊断、治疗和预后建模中,具有改变痴呆症护理格局的巨大潜力。本综述探讨了 AI 在 AD 管理各个阶段应用的最新进展。在早期诊断中,人工智能增强的神经影像学技术,包括 MRI、PET 和 CT 扫描,能够精确检测 AD 的生物标志物。机器学习模型分析这些图像,以识别早期认知能力下降的模式。此外,还利用 AI 算法来检测遗传和蛋白质组学标志物,以实现早期干预。人工智能也使认知和行为评估受益,工具可增强神经心理学测试的准确性,并分析言语和语言模式以发现痴呆的早期迹象。人工智能驱动的方法彻底改变了个性化治疗策略。在药物发现中,基于预测模型的虚拟筛选和药物再利用加速了有效治疗方法的鉴定。人工智能还通过预测个体对治疗的反应并监测患者进展,帮助定制治疗干预措施,从而允许动态调整护理计划。预后建模是另一个关键领域,它利用人工智能通过纵向数据分析和风险预测模型来预测疾病进展。通过整合多模态数据,结合临床、遗传和影像学信息,提高了这些预测的准确性。深度学习技术在融合各种数据类型方面特别有效,可以揭示疾病机制和进展的新见解。尽管取得了这些进展,但仍存在挑战,包括伦理考虑、数据隐私以及将人工智能工具无缝集成到临床工作流程中的需求。本综述强调了 AI 在 AD 管理中的变革潜力,同时突出了未来研究和发展的领域。通过利用 AI,医疗保健社区可以改善早期诊断、个性化治疗,并更准确地预测疾病结局,从而最终提高 AD 患者的生活质量。
Alzheimers Dement. 2023-12
J Multidiscip Healthc. 2024-8-15
Int J Mol Sci. 2025-8-13
Front Med (Lausanne). 2025-7-14