Arghavani Payam, Daneshgar Hossein, Sojdeh Soheil, Edrisi Mohammad, Moosavi-Movahedi Ali Akbar, Rabiee Navid
Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
School of Chemistry, University of Tehran, Tehran, Iran.
Adv Healthc Mater. 2025 Jan 6:e2404685. doi: 10.1002/adhm.202404685.
Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases. Emerging porous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), MXene, zeolites, and porous silicon, offer promising new approaches for the early diagnosis of neurodegenerative diseases. These materials, characterized by highly tunable physicochemical properties, have the potential to capture and concentrate disease-specific biomarkers such as amyloid-beta (Aβ), tau protein, and alpha-synuclein (α-Syn). The integration of these materials into advanced biosensors for real-time detection holds the promise of revolutionizing neurodiagnostic, enabling non-invasive, highly sensitive, and specific detection platforms. Furthermore, the incorporation of artificial intelligence (AI) and machine learning (ML) techniques into the analysis of sensor data enhances diagnostic accuracy and allows for more efficient interpretation of complex biomarker profiles. AI and ML can optimize feature selection, improve pattern recognition, and facilitate the prediction of disease progression, making them indispensable tools for personalized medicine. This review explores the potential of porous materials in neurodegenerative disease diagnostics, emphasizing their design, functionality, and the synergistic role of AI and ML in advancing clinical applications.
神经退行性疾病,尤其是阿尔茨海默病和帕金森病,因其复杂的病理机制和缺乏治愈性治疗方法,给现代医学带来了巨大挑战。尽管在症状管理方面取得了进展,但早期诊断对于减缓疾病进展和改善患者预后仍然至关重要。传统的诊断方法,如磁共振成像(MRI)、正电子发射断层扫描(PET)和脑脊液生物标志物分析,往往不足以早期检测出这些疾病。新兴的多孔材料,包括金属有机框架(MOF)、共价有机框架(COF)、MXene、沸石和多孔硅,为神经退行性疾病的早期诊断提供了有前景的新方法。这些材料具有高度可调节的物理化学性质,有可能捕获和浓缩疾病特异性生物标志物,如β-淀粉样蛋白(Aβ)、tau蛋白和α-突触核蛋白(α-Syn)。将这些材料集成到先进的生物传感器中进行实时检测,有望彻底改变神经诊断,实现非侵入性、高灵敏度和特异性的检测平台。此外,将人工智能(AI)和机器学习(ML)技术纳入传感器数据分析中,可提高诊断准确性,并更有效地解读复杂的生物标志物谱。AI和ML可以优化特征选择、改善模式识别并促进疾病进展预测,使其成为个性化医疗中不可或缺 的工具。本综述探讨了多孔材料在神经退行性疾病诊断中的潜力,强调了它们的设计、功能以及AI和ML在推进临床应用中的协同作用。