Suppr超能文献

用于神经退行性疾病早期检测的人工智能辅助眼科成像。

AI-assisted ophthalmic imaging for early detection of neurodegenerative diseases.

作者信息

Tukur Hajar Nasir, Uwishema Olivier, Akbay Hatice, Sheikhah Dalal, Correia Inês Filipa Silva

机构信息

Oli Health Magazine Organization, Department of Research, and Education, Kigali, Rwanda.

Faculty of Medicine, Bahçeşehir University, Istanbul, Türkiye.

出版信息

Int J Emerg Med. 2025 May 6;18(1):90. doi: 10.1186/s12245-025-00870-y.

Abstract

BACKGROUND

Artificial intelligence (AI) plays a promising role in ophthalmic imaging by providing innovative, non-invasive tools for the early detection of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Since early diagnosis is crucial for slowing disease progression and improving patient outcomes, leveraging AI-assisted ophthalmic imaging retinal imaging can enhance detection accuracy and clinical decision-making.

METHODS

This review examines clinical applications of AI in identifying retinal biomarkers associated with neurodegenerative diseases. Relevant data was gathered through a comprehensive literature review using PubMed, ScienceDirect, and Google Scholar to evaluate studies utilizing AI algorithms for retinal imaging analysis, focusing on diagnostic performance, sensitivity, specificity, and clinical relevance.

RESULTS

AI-assisted ophthalmic imaging retinal imaging enhances the early identification of neurodegenerative diseases by detecting microscopic structural and vascular changes in the retina. Studies have demonstrated that AI models analyzing Optical Coherence Tomography (OCT) and fundus images achieve high diagnostic accuracy. Studies have reported an area under the curve (AUC) of up to 0.918 in PD detection, with sensitivity ranging from 80 to 100% and specificity up to 85%. Similarly, AI-assisted OCT angiography (OCT-A) analysis has successfully identified retinal vascular alterations in AD patients, correlating with cognitive decline and an AUC of 0.73-0.91. These findings highlight AI's potential to detect preclinical disease stages before significant neurological symptoms manifest.

DISCUSSION

The integration of AI technologies into ophthalmic imaging holds the potential to improve early diagnosis and transform patient outcomes. However, challenges such as model interpretability, dataset biases, and ethical considerations must be addressed to ensure the responsible integration of AI into clinical practice. Future research should focus on refining AI algorithms, integrating multimodal imaging techniques, and developing predictive biomarkers to optimize early intervention strategies for neurodegenerative diseases.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

人工智能(AI)通过提供创新的、非侵入性工具用于早期检测诸如阿尔茨海默病(AD)和帕金森病(PD)等神经退行性疾病,在眼科成像中发挥着有前景的作用。由于早期诊断对于减缓疾病进展和改善患者预后至关重要,利用人工智能辅助的眼科成像视网膜成像可以提高检测准确性和临床决策能力。

方法

本综述研究了人工智能在识别与神经退行性疾病相关的视网膜生物标志物方面的临床应用。通过使用PubMed、ScienceDirect和谷歌学术进行全面的文献综述收集相关数据,以评估利用人工智能算法进行视网膜成像分析的研究,重点关注诊断性能、敏感性、特异性和临床相关性。

结果

人工智能辅助的眼科成像视网膜成像通过检测视网膜中的微观结构和血管变化,增强了对神经退行性疾病的早期识别。研究表明,分析光学相干断层扫描(OCT)和眼底图像的人工智能模型具有较高的诊断准确性。研究报告称,在帕金森病检测中曲线下面积(AUC)高达0.918,敏感性范围为80%至100%,特异性高达85%。同样,人工智能辅助的OCT血管造影(OCT-A)分析已成功识别出AD患者的视网膜血管改变,与认知衰退相关,AUC为0.73 - 0.91。这些发现突出了人工智能在重大神经症状出现之前检测临床前疾病阶段的潜力。

讨论

将人工智能技术整合到眼科成像中有可能改善早期诊断并改变患者预后。然而,必须解决诸如模型可解释性、数据集偏差和伦理考量等挑战,以确保人工智能在临床实践中的负责任整合。未来的研究应专注于优化人工智能算法、整合多模态成像技术以及开发预测性生物标志物,以优化神经退行性疾病的早期干预策略。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2488/12054287/46ab3341087d/12245_2025_870_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验