Wissel Kerstin, Hu Zian, Wu Xuebin, Jacob Martine, Küster Kathrin, Starke Ulrich, Clemens Oliver
Institute for Materials Science, Chemical Materials Synthesis, University of Stuttgart, Heisenbergstraβe 3, 70569, Stuttgart, Germany.
Max, Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
ChemSusChem. 2025 May 5;18(9):e202402128. doi: 10.1002/cssc.202402128. Epub 2025 Jan 20.
All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates LiPSX (X=Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes. This study investigates the dissolution-based separation and recovery of argyrodite thiophosphate electrolytes and transition metal oxide electrode materials as a potential recycling strategy for ASSBs. A focus is set on the impact of solvent treatments on the recrystallization behavior of these electrolytes. Furthermore, the interactions between dissolved argyrodite thiophosphates and various transition metal oxide electrode materials (LiCoO, LiMnO, LiNiMnCoO, LiFePO and LiTiO) is examined to assess their influence on the functional properties of both the electrolytes and electrode materials. Structural, compositional and morphological changes are analyzed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. Our findings provide insights into the complexities of recycling ASSBs, but also highlight the potential for developing efficient, sustainable recycling processes.
全固态锂离子电池(ASSBs)代表了电池技术向前迈出的有前景的一大步,其发展迅速。在各种固体电解质中,硫代磷酸银锂LiPSX(X = Cl、Br、I)因其高离子电导率、结构灵活性以及与一系列电极材料的兼容性而脱颖而出,使其成为高效且可扩展电池应用的理想候选材料。然而,尽管在性能方面取得了显著进展,但ASSBs的可持续性和回收利用仍未得到充分探索,这对实现高效循环过程构成了重大挑战。本研究调查了基于溶解的硫代磷酸银锂电解质和过渡金属氧化物电极材料的分离与回收,作为ASSBs的一种潜在回收策略。重点关注溶剂处理对这些电解质重结晶行为的影响。此外,还研究了溶解的硫代磷酸银锂与各种过渡金属氧化物电极材料(LiCoO、LiMnO、LiNiMnCoO、LiFePO和LiTiO)之间的相互作用,以评估它们对电解质和电极材料功能特性的影响。使用X射线衍射、扫描电子显微镜、能量色散X射线光谱、电感耦合等离子体质谱和X射线光电子能谱分析结构、成分和形态变化。我们的研究结果不仅深入了解了ASSBs回收利用的复杂性,还突出了开发高效、可持续回收过程的潜力。