Suppr超能文献

利用知识引导的无监督潜在因素聚类和电子健康记录数据对阿尔茨海默病患者进行分层

Stratification of Alzheimer's Disease Patients Using Knowledge-Guided Unsupervised Latent Factor Clustering with Electronic Health Record Data.

作者信息

Wang Linshanshan, Venkatesh Shruthi, Morris Michele, Li Mengyan, Srivastava Ratnam, Visweswaran Shyam, Lopez Oscar, Xia Zongqi, Cai Tianxi

出版信息

medRxiv. 2024 Dec 26:2024.12.23.24319588. doi: 10.1101/2024.12.23.24319588.

Abstract

BACKGROUND

People with Alzheimer's disease (AD) exhibit varying clinical trajectories. There is a need to predict future AD-related outcomes such as morbidity and mortality using clinical profile at the point of care.

OBJECTIVE

To stratify AD patients based on baseline clinical profiles (up to two years prior to AD diagnosis) and update the model after AD diagnosis to prognosticate future AD-related outcomes.

METHODS

Using the electronic health record (EHR) data of a large healthcare system (2011-2022), we first identified patients with ≥1 diagnosis code for AD or related dementia and applied a validated unsupervised phenotyping algorithm to assign AD diagnosis status. Next, we applied an unsupervised latent factor clustering approach, guided by knowledge graph embeddings of relevant EHR features up to the baseline, to cluster patients into two groups at AD diagnosis. We then prognosticated the risk of two readily ascertainable and clinically relevant AD-related outcomes ( nursing home admission indicating greater need for assistance and mortality), adjusting for baseline confounders ( age, gender, race, ethnicity, healthcare utilization, and comorbidities). For patients remaining at risk one year post-diagnosis, we updated their group membership and repeated the prognostication.

RESULTS

We stratified 16,411 algorithm-identified AD patients into two groups based on their baseline clinical profiles (41% Group 1, 59% Group 2). Patients in Group 1 were marginally older at AD diagnosis (age Mean [SD]: 81.4 [9.3] vs 81.0 [8.7], =.007), exhibited greater comorbidity burden (Elixhauser comorbidity index Mean [SD]: 11.3 [10.3] vs 7.5 [8.6], <.0001), and more frequently received AD-related medications (47.7% vs 40.9%, <.0001) than those in Group 2. Compared to Group 1, Group 2 had a lower risk of nursing home admission (HR [95% CI]=0.804 [0.765, 0.844], <.001), while the two groups had similar mortality risk (HR [95% CI]=1.008 [0.963, 1.056], =.733). One year after AD diagnosis, 12,606 patients remained at risk (45.7% Group 1, 54.3% Group 2). Consistent with baseline findings, Group 2 had a lower risk of nursing home admission than (HR [95% CI]=0.815 [0.766, 0.868], <.001) and similar mortality risk as (HR [95% CI]=0.977 [0.922, 1.035], =0.430) Group 1 in the updated model.

CONCLUSIONS

It is feasible to stratify patients based on readily available clinical profiles before AD diagnosis and crucially to update the model one year after diagnosis to effectively prognosticate future AD-related outcomes.

SHORT ABSTRACT

Prognostication for people with Alzheimer's disease (AD) at the point of care could improve clinical management. Applying a novel unsupervised latent factor clustering approach guided by knowledge graph embeddings of relevant clinical features from electronic health records, we stratified 16,411 AD patients into two groups at diagnosis and prognosticated their risk of AD-related outcomes ( nursing home admission, mortality), adjusting for baseline confounders. To reflect real-world evolution in clinical trajectories, we updated patient stratification for 12,606 AD patients remaining at risk 1-year post-diagnosis and repeated prognostication. At both timepoints, one group had a higher nursing home admission risk and exhibited characteristics suggesting greater symptom burden, but the mortality risk remained comparable between groups. This study supports that patient stratification can enable outcome prognosis for AD patients. While baseline prognostication can guide early treatment and tailored management, dynamic prognostication may inform more timely interventions to improve long-term outcomes.

摘要

背景

阿尔茨海默病(AD)患者表现出不同的临床病程。需要利用即时医疗点的临床特征预测未来与AD相关的结局,如发病率和死亡率。

目的

根据基线临床特征(AD诊断前长达两年)对AD患者进行分层,并在AD诊断后更新模型以预测未来与AD相关的结局。

方法

利用一个大型医疗系统(2011 - 2022年)的电子健康记录(EHR)数据,我们首先识别出具有≥1个AD或相关痴呆诊断代码的患者,并应用经过验证的无监督表型分析算法来确定AD诊断状态。接下来,我们应用一种无监督潜在因素聚类方法,在相关EHR特征的知识图谱嵌入的指导下,直至基线,在AD诊断时将患者聚类为两组。然后,我们预测了两个易于确定且与临床相关的AD相关结局(表明更需要帮助的养老院入住和死亡率)的风险,并对基线混杂因素(年龄、性别、种族、民族、医疗利用和合并症)进行了调整。对于诊断后一年仍有风险的患者,我们更新了他们的分组并重复进行预测。

结果

我们根据基线临床特征将16411例经算法识别的AD患者分为两组(第1组占41%,第2组占59%)。第1组患者在AD诊断时年龄略大(年龄均值[标准差]:81.4[9.3]岁对81.0[8.7]岁,P = 0.007),合并症负担更重(埃利克斯豪泽合并症指数均值[标准差]:11.3[10.3]对7.5[8.6],P < 0.0001),且比第2组更频繁地接受AD相关药物治疗(47.7%对40.9%,P < 0.0001)。与第1组相比,第2组养老院入住风险较低(风险比[95%置信区间]=0.804[0.765, 0.844],P < 0.001),而两组的死亡风险相似(风险比[95%置信区间]=1.008[0.963, 1.056],P = 0.733)。AD诊断一年后,12606例患者仍有风险(第1组占45.7%,第2组占54.3%)。与基线结果一致,在更新模型中,第2组养老院入住风险低于第1组(风险比[95%置信区间]=0.815[0.766, 0.868],P < 0.001),且死亡风险与第1组相似(风险比[95%置信区间]=0.977[0.922, 1.035],P = 0.430)。

结论

在AD诊断前根据易于获得的临床特征对患者进行分层是可行的,关键是在诊断一年后更新模型以有效预测未来与AD相关的结局。

简短摘要

在即时医疗点对阿尔茨海默病(AD)患者进行预后评估可改善临床管理。应用一种由电子健康记录中相关临床特征知识图谱嵌入指导的新型无监督潜在因素聚类方法,我们在诊断时将16411例AD患者分为两组,并预测他们与AD相关结局(养老院入住、死亡率)的风险,同时对基线混杂因素进行了调整。为反映临床病程的实际演变,我们对诊断后一年仍有风险的12606例AD患者更新了分层并重复进行预后评估。在两个时间点,一组养老院入住风险较高且表现出提示症状负担更重的特征,但两组之间的死亡风险仍然相当。本研究支持患者分层可实现AD患者的结局预后。虽然基线预后可指导早期治疗和个性化管理,但动态预后可为更及时的干预提供信息以改善长期结局。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验