Suppr超能文献

哺乳动物中转座元件的剂量补偿

Dosage compensation of transposable elements in mammals.

作者信息

Wei Chunyao, Kesner Barry, Weissbein Uri, Wasserzug-Pash Peera, Das Priyojit, Lee Jeannie T

机构信息

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

出版信息

bioRxiv. 2024 Dec 18:2024.12.16.628797. doi: 10.1101/2024.12.16.628797.

Abstract

In mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin. To overcome these challenges, here we develop a new bioinformatic pipeline tailored to repetitive elements with capability for allelic discrimination. We then apply the pipeline to our recent So-Smart-Seq analysis of single embryos to comprehensively interrogate whether X-linked TEs are subject to either XCI or Xa-hyperactivation. With regards to XCI, we observe significant differences in TE silencing in parentally driven "imprinted" XCI versus zygotically driven "random" XCI. Chromosomal positioning and genetic background impact TE silencing. We also find that SINEs may influence 3D organization during XCI. In contrast, TEs do not undergo Xa-hyperactivation. Thus, while coding genes are subject to both forms of dosage compensation, TEs participate only in Xi silencing. Evolutionary and functional implications are discussed.

摘要

在哺乳动物中,X染色体剂量补偿涉及两个过程:X染色体失活(XCI)以平衡雄性和雌性之间的X染色体剂量,以及剩余X染色体的超活化(Xa-超活化)以在两性中实现X染色体与常染色体的平衡。对这两个过程的研究主要集中在编码基因上,并未考虑到占X染色体50%的转座元件(TEs),尽管TEs被怀疑具有众多表观遗传功能。这种疏忽部分是由于捕获重复RNA、通过生物信息学方法对其进行比对以及确定等位基因起源的技术挑战。为了克服这些挑战,我们在此开发了一种专门针对重复元件的新生物信息学流程,该流程具有等位基因区分能力。然后,我们将该流程应用于我们最近对单个胚胎的So-Smart-Seq分析,以全面探究X连锁TEs是否受到XCI或Xa-超活化的影响。关于XCI,我们观察到在亲本驱动的“印记”XCI与合子驱动的“随机”XCI中,TE沉默存在显著差异。染色体定位和遗传背景会影响TE沉默。我们还发现短散在核元件(SINEs)可能在XCI过程中影响三维结构。相比之下,TEs不会经历Xa-超活化。因此,虽然编码基因会受到两种形式的剂量补偿,但TEs仅参与X染色体失活沉默。本文讨论了其进化和功能意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf6/11702583/87d4976c9ed4/nihpp-2024.12.16.628797v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验