Suppr超能文献

一种生成由专家指导的、简化的本体视图的通用策略。

A general strategy for generating expert-guided, simplified views of ontologies.

作者信息

Caron Anita R, Puig-Barbe Aleix, Quardokus Ellen M, Balhoff James P, Belfiore Jasmine, Chipampe Nana-Jane, Hardi Josef, Herr Bruce W, Kir Huseyin, Roncaglia Paola, Musen Mark A, McLaughlin James A, Börner Katy, Osumi-Sutherland David

机构信息

European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47408, USA.

出版信息

bioRxiv. 2024 Dec 17:2024.12.13.628309. doi: 10.1101/2024.12.13.628309.

Abstract

Annotation with widely used, well-structured ontologies, combined with the use of ontology-aware software tools, ensures data and analyses are Findable, Accessible, Interoperable and Reusable (FAIR). Standardized terms with synonyms support lexical search. Ontology structure supports biologically meaningful grouping of annotations (typically by location and type). However, there are significant barriers to the adoption and use of ontologies by researchers and resource developers. One barrier is complexity. Ontologies serving diverse communities are often more complex than needed for individual applications. It is common for atlases to attempt their own simplifications by manually constructing hierarchies of terms linked to ontologies, but these typically include relationship types that are not suitable for grouping annotations. Here, we present a suite of tools for validating user hierarchies against ontology structure, using them to generate graphical reports for discussion and ontology views tailored to the needs of the HuBMAP Human Reference Atlas, and the Human Developmental Cell Atlas. In both cases, validation is a source of corrections and content for both ontologies and user hierarchies.

摘要

使用广泛应用且结构良好的本体进行注释,并结合使用支持本体的软件工具,可确保数据和分析具有可查找性、可访问性、互操作性和可重用性(FAIR)。带有同义词的标准化术语支持词汇搜索。本体结构支持按生物学意义对注释进行分组(通常按位置和类型)。然而,研究人员和资源开发者在采用和使用本体方面存在重大障碍。一个障碍是复杂性。服务于不同群体的本体通常比单个应用所需的更为复杂。图谱通常会试图通过手动构建与本体相关的术语层次结构来进行自身简化,但这些层次结构通常包含不适合对注释进行分组的关系类型。在此,我们展示了一套工具,用于根据本体结构验证用户层次结构,利用它们生成图形报告以供讨论,并生成针对HuBMAP人类参考图谱和人类发育细胞图谱需求定制的本体视图。在这两种情况下,验证都是本体和用户层次结构的修正及内容来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/697d/11702530/66b3827373da/nihpp-2024.12.13.628309v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验