Koch Elise, Jürgenson Tuuli, Einarsson Guðmundur, Mitchell Brittany, Harder Arvid, García-Marín Luis M, Krebs Kristi, Lin Yuhao, Shadrin Alexey, Xiong Ying, Frei Oleksandr, Lu Yi, Hägg Sara, Renteria Miguel, Medland Sarah, Wray Naomi, Martin Nicholas, Hübel Christopher, Breen Gerome, Thorgeirsson Thorgeir, Stefansson Hreinn, Stefansson Kari, Lehto Kelli, Milani Lili, Andreassen Ole, O Connell Kevin
Centre for Precision Psychiatry, University of Oslo.
QIMR Berghofer Medical Research Institute.
Res Sq. 2024 Dec 23:rs.3.rs-5418279. doi: 10.21203/rs.3.rs-5418279/v1.
Antidepressants exhibit a considerable variation in efficacy, and increasing evidence suggests that individual genetics contribute to antidepressant treatment response. Here, we combined data on antidepressant non-response measured using rating scales for depressive symptoms, questionnaires of treatment effect, and data from electronic health records, to increase statistical power to detect genomic loci associated with non-response to antidepressants in a total sample of 135,471 individuals prescribed antidepressants (25,255 non-responders and 110,216 responders). We performed genome-wide association meta-analyses, genetic correlation analyses, leave-one-out polygenic prediction, and bioinformatics analyses for genetically informed drug prioritization. We identified two novel loci (rs1106260 and rs60847828) associated with non-response to antidepressants and showed significant polygenic prediction in independent samples. Genetic correlation analyses show positive associations between non-response to antidepressants and most psychiatric traits, and negative associations with cognitive traits and subjective well-being. In addition, we investigated drugs that target proteins likely involved in mechanisms underlying antidepressant non-response, and shortlisted drugs that warrant further replication and validation of their potential to reduce depressive symptoms in individuals who do not respond to first-line antidepressant medications. These results suggest that meta-analyses of GWAS utilizing real-world measures of treatment outcomes can increase sample sizes to improve the discovery of variants associated with non-response to antidepressants.
抗抑郁药的疗效存在显著差异,越来越多的证据表明个体基因因素会影响抗抑郁治疗的反应。在此,我们整合了抑郁症状评定量表、治疗效果问卷及电子健康记录中关于抗抑郁药治疗无反应的数据,以提高统计效能,从而在135471名服用抗抑郁药的个体(25255名无反应者和110216名有反应者)的总样本中检测与抗抑郁药无反应相关的基因组位点。我们进行了全基因组关联荟萃分析、遗传相关性分析、留一法多基因预测以及生物信息学分析,以进行基于遗传信息的药物优先级排序。我们鉴定出两个与抗抑郁药无反应相关的新位点(rs1106260和rs60847828),并在独立样本中显示出显著的多基因预测。遗传相关性分析表明,抗抑郁药无反应与大多数精神疾病性状呈正相关,与认知性状和主观幸福感呈负相关。此外,我们研究了针对可能参与抗抑郁药无反应潜在机制的蛋白质的药物,并筛选出了一些药物,这些药物需要进一步重复验证其在一线抗抑郁药治疗无反应个体中减轻抑郁症状的潜力。这些结果表明,利用治疗结果的真实世界测量进行全基因组关联研究的荟萃分析可以增加样本量,以改善与抗抑郁药无反应相关变异的发现。