Zhou Meixuan, Su Xiaofan, Guo Tianruo, Meng Tianyue, Wu Weilei, Di Liqing, Li Liming, Li Heng, Chai Xinyu
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.
Front Neurosci. 2024 Dec 23;18:1518488. doi: 10.3389/fnins.2024.1518488. eCollection 2024.
Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.
Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.
We developed an anatomically accurate multi-layer human eye model, incorporating the optic nerve segment and setting it apart from current research endeavors. Based on this model, we conducted in investigations to predict the influence of the optic nerve on spatial characteristics of the temporally interfering electric field (TIEF) generated by diverse electrode configurations.
Optic nerve directly influenced spatial distributions and modulation rules of TIEFs. It caused convergent areas to shift nasally or temporally in relation to return electrode positions, and further increased the axial anisotropy within the convergent TIEF. Furthermore, alterations in electrode positions and adjustments to current ratios among channels induced diverse spatial patterns of TIEFs within the macular region, the area surrounding the optic nerve, as well as peripheral retina.
Our findings suggested that presence of the optic nerve necessitated the utilization of different modulating paradigms when employing TI strategy for targeted treatment of various retinal lesions. And also provided theoretical references for developing a novel retinal electrical stimulation therapeutic device based on TI technology.
传统的眼外电刺激通常会在整个视网膜上产生扩散的电场,限制了靶向治疗的精度。时间干扰(TI)电刺激是一种新兴方法,能够产生会聚电场,为各种眼部疾病的靶向治疗提供优势。
了解视网膜的详细结构,尤其是视神经,如何影响电场,可增强TI方法在视网膜神经退行性疾病和血管疾病中的应用,这是以往研究中经常被忽视的一个重要方面。
我们开发了一个解剖结构精确的多层人眼模型,纳入了视神经段,并使其与当前的研究有所不同。基于该模型,我们进行了研究,以预测视神经对不同电极配置产生的时间干扰电场(TIEF)空间特性的影响。
视神经直接影响TIEF的空间分布和调制规则。它导致会聚区域相对于返回电极位置向鼻侧或颞侧移动,并进一步增加了会聚TIEF内的轴向各向异性。此外,电极位置的改变和通道间电流比率的调整在黄斑区域、视神经周围区域以及周边视网膜内诱发了不同的TIEF空间模式。
我们的研究结果表明,在采用TI策略对各种视网膜病变进行靶向治疗时,视神经的存在需要采用不同的调制模式。并且为基于TI技术开发新型视网膜电刺激治疗设备提供了理论参考。