Elhamiasl Masoud, Jolivet Frederic, Rezaei Ahmadreza, Fieseler Michael, Schäfers Klaus, Nuyts Johan, Schramm Georg, Boada Fernando
ArXiv. 2025 Mar 17:arXiv:2412.15018v2.
Whole-body PET imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated TOF PET. These methods enable the reconstruction of a single activity image free from motion and attenuation artifacts. The proposed methods were evaluated using data from the anthropomorphic Wilhelm phantom acquired on a Siemens mCT PET/CT system, as well as 3 clinical FDG PET/CT datasets acquired on a GE DMI PET/CT system. Image quality was assessed visually to identify motion and attenuation artifacts. Lesion uptake values were quantitatively compared across reconstructions without motion modeling, with motion modeling but static attenuation correction, and with our proposed methods. For the Wilhelm phantom, the proposed methods delivered image quality closely matching the reference reconstruction from a static acquisition. The lesion-to-background contrast for a liver dome lesion improved from 2.0 (no motion correction) to 5.2 (proposed methods), matching the contrast from the static acquisition (5.2). In contrast, motion modeling with static attenuation correction yielded a lower contrast of 3.5. In patient datasets, the proposed methods successfully reduced motion artifacts in lung and liver lesions and mitigated attenuation artifacts, demonstrating superior lesion to background separation. Our proposed methods enable the reconstruction of a single, high-quality activity image that is motion-corrected and free from attenuation artifacts, without the need for external hardware.
在采集过程中,全身PET成像常常受到呼吸运动的阻碍,导致重建的活性图像质量显著下降。PET/CT成像中的另一个挑战源于基于CT的衰减校正和PET采集之间的呼吸相位不匹配,从而产生衰减伪影。为了解决这些问题,我们提出了两种全新的、完全由数据驱动的方法,用于在呼吸自门控TOF PET中联合估计活性、衰减和运动。这些方法能够重建出一幅没有运动和衰减伪影的单一活性图像。我们使用在西门子mCT PET/CT系统上采集的拟人化威廉姆体模数据,以及在GE DMI PET/CT系统上采集的3个临床FDG PET/CT数据集,对所提出的方法进行了评估。通过视觉评估图像质量,以识别运动和衰减伪影。在没有运动建模、有运动建模但采用静态衰减校正以及采用我们提出的方法的重建结果之间,对病变摄取值进行了定量比较。对于威廉姆体模,所提出的方法所提供的图像质量与静态采集的参考重建结果非常接近。肝顶部病变的病变与背景对比度从2.0(无运动校正)提高到了5.2(所提出的方法),与静态采集的对比度(5.2)相匹配。相比之下,采用静态衰减校正的运动建模产生的对比度较低,为3.5。在患者数据集中,所提出的方法成功减少了肺部和肝脏病变中的运动伪影,并减轻了衰减伪影,显示出卓越的病变与背景分离效果。我们提出的方法能够重建出一幅经过运动校正且没有衰减伪影的单一高质量活性图像,而无需外部硬件。