Suppr超能文献

锚定准确组装侧翼带有锚的合成长读段。

Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads.

作者信息

Zang Xiaofei Carl, Li Xiang, Metcalfe Kyle, Ben-Yehezkel Tuval, Kelley Ryan, Shao Mingfu

机构信息

Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.

Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, USA.

出版信息

Lebniz Int Proc Inform. 2024;312. doi: 10.4230/LIPIcs.WABI.2024.22. Epub 2024 Aug 26.

Abstract

Modern sequencing technologies allow for the addition of short-sequence tags, known as anchors, to both ends of a captured molecule. Anchors are useful in assembling the full-length sequence of a captured molecule as they can be used to accurately determine the endpoints. One representative of such anchor-enabled technology is LoopSeq Solo, a synthetic long read (SLR) sequencing protocol. LoopSeq Solo also achieves ultra-high sequencing depth and high purity of short reads covering the entire captured molecule. Despite the availability of many assembly methods, constructing full-length sequence from these anchor-enabled, ultra-high coverage sequencing data remains challenging due to the complexity of the underlying assembly graphs and the lack of specific algorithms leveraging anchors. We present Anchorage, a novel assembler that performs anchor-guided assembly for ultra-high-depth sequencing data. Anchorage starts with a kmer-based approach for precise estimation of molecule lengths. It then formulates the assembly problem as finding an optimal path that connects the two nodes determined by anchors in the underlying compact de Bruijn graph. The optimality is defined as maximizing the weight of the smallest node while matching the estimated sequence length. Anchorage uses a modified dynamic programming algorithm to efficiently find the optimal path. Through both simulations and real data, we show that Anchorage outperforms existing assembly methods, particularly in the presence of sequencing artifacts. Anchorage fills the gap in assembling anchor-enabled data. We anticipate its broad use as anchor-enabled sequencing technologies become prevalent. Anchorage is freely available at https://github.com/Shao-Group/anchorage; the scripts and documents that can reproduce all experiments in this manuscript are available at https://github.com/Shao-Group/anchorage-test.

摘要

现代测序技术允许在捕获分子的两端添加短序列标签,即锚定序列。锚定序列在组装捕获分子的全长序列时很有用,因为它们可用于准确确定端点。这种支持锚定序列的技术的一个代表是LoopSeq Solo,一种合成长读长(SLR)测序协议。LoopSeq Solo还实现了超高测序深度以及覆盖整个捕获分子的短读长的高纯度。尽管有许多组装方法,但由于底层组装图的复杂性以及缺乏利用锚定序列的特定算法,从这些支持锚定序列的超高覆盖度测序数据构建全长序列仍然具有挑战性。我们提出了Anchorage,一种用于超高深度测序数据的新型锚定引导组装器。Anchorage首先采用基于kmer的方法精确估计分子长度。然后,它将组装问题表述为在底层紧凑的德布鲁因图中找到连接由锚定序列确定的两个节点的最优路径。最优性定义为在匹配估计序列长度的同时最大化最小节点的权重。Anchorage使用一种改进的动态规划算法来有效地找到最优路径。通过模拟和真实数据,我们表明Anchorage优于现有的组装方法,特别是在存在测序伪像的情况下。Anchorage填补了支持锚定序列数据组装方面的空白。随着支持锚定序列的测序技术变得普遍,我们预计它将得到广泛应用。Anchorage可在https://github.com/Shao-Group/anchorage免费获取;可重现本手稿中所有实验的脚本和文档可在https://github.com/Shao-Group/anchorage-test获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ba/11702288/302c39cbf75c/nihms-2042175-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验