Guo Hui-Li, Liu Yi-Hong, Wang Li-Xiao, Wang Ning-Ya, Jiang Xiao-Jie, Pang Jing-Yu, Dang Dong-Bin, Ji Xiao-Yan, Bai Yan
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China.
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China.
J Colloid Interface Sci. 2025 Apr;683(Pt 2):1041-1048. doi: 10.1016/j.jcis.2024.12.245. Epub 2025 Jan 2.
Single-atom catalysts (SACs), known for their high atomic utilization efficiency, are highly attractive for electrochemical CO conversion. Nevertheless, it is struggling to use a single active site to overcome the linear scaling relationship among intermediates. Herein, an isolated diatomic Ni-Mn dual-sites catalyst was anchored on nitrogenated carbon, which exhibits remarkable electrocatalytic performance towards CO reduction. The catalyst achieves CO Faradaic efficiency (FE) over 90 % within the potential range of -0.6 to -1.4 V vs. reversible hydrogen electrode (RHE), and a nearly 100 % FE at a current density of 325 mA cm in the flow cell. The Ni-Mn-NC also exhibits long-term stability, maintaining FE above 96 % for over 14 h. The density functional theory (DFT) studies further reveal that the synergistic effect of adjacent Ni-Mn centers effectively reduces the reaction barriers for the formation of *COOH and thus accelerates the reduction of CO.
单原子催化剂(SACs)以其高原子利用效率而闻名,在电化学CO转化方面极具吸引力。然而,利用单一活性位点来克服中间体之间的线性标度关系仍面临困难。在此,一种孤立的双原子Ni-Mn双位点催化剂被锚定在含氮碳上,该催化剂对CO还原表现出卓越的电催化性能。在相对于可逆氢电极(RHE)为-0.6至-1.4 V的电位范围内,该催化剂实现了超过90%的CO法拉第效率(FE),并且在流动池中电流密度为325 mA cm时FE接近100%。Ni-Mn-NC还表现出长期稳定性,在超过14小时内将FE维持在96%以上。密度泛函理论(DFT)研究进一步表明,相邻Ni-Mn中心的协同效应有效降低了*COOH形成的反应势垒,从而加速了CO的还原。