Suppr超能文献

PreTKcat:一种用于预测酶转换数的预训练表征学习和机器学习框架。

PreTKcat: A pre-trained representation learning and machine learning framework for predicting enzyme turnover number.

作者信息

Cai Yunxiang, Zhang Wenjuan, Dou Zhuangzhuang, Wang Chao, Yu Wenping, Wang Lin

机构信息

College of Artificial Intelligence, Tianjin University of Science and Technology, No. 9, 13th Street, Tianjin Economic-Technological Development Area, Tianjin, 300457, China.

College of General Education, Tianjin Foreign Studies University, No. 117, Machang Road, Hexi District, Tianjin, 300204, China.

出版信息

Comput Biol Chem. 2025 Apr;115:108327. doi: 10.1016/j.compbiolchem.2024.108327. Epub 2025 Jan 1.

Abstract

The enzyme turnover number (k) is crucial for understanding enzyme kinetics and optimizing biotechnological processes. However, experimentally measured k values are limited due to the high cost and labor intensity of wet-lab measurements, necessitating robust computational methods. To address this issue, we propose PreTKcat, a framework that integrates pre-trained representation learning and machine learning to predict k values. PreTKcat utilizes the ProtT5 protein language model to encode enzyme sequences and the MolGNet molecular representation learning model to encode substrate molecular graphs. By integrating these representations, the ExtraTrees model is employed to predict k values. Additionally, PreTKcat accounts for the impact of temperature on k prediction. In addition, PreTKcat can also be used to predict enzyme-substrate affinity, i.e. km values. Comparative assessments with various state-of-the-art models highlight the superior performance of PreTKcat. PreTKcat serves as an effective tool for investigating enzyme kinetics, offering new perspectives for enzyme engineering and its industrial uses.

摘要

酶转换数(k)对于理解酶动力学和优化生物技术过程至关重要。然而,由于湿实验室测量成本高且劳动强度大,实验测量的k值有限,因此需要强大的计算方法。为了解决这个问题,我们提出了PreTKcat,这是一个集成预训练表征学习和机器学习来预测k值的框架。PreTKcat利用ProtT5蛋白质语言模型对酶序列进行编码,并利用MolGNet分子表征学习模型对底物分子图进行编码。通过整合这些表征,使用ExtraTrees模型来预测k值。此外,PreTKcat考虑了温度对k预测的影响。此外,PreTKcat还可用于预测酶-底物亲和力,即km值。与各种最先进模型的比较评估突出了PreTKcat的卓越性能。PreTKcat是研究酶动力学的有效工具,为酶工程及其工业应用提供了新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验